

Cloud Computing

This page is intentionally left blank

Dan C. Marinescu

Cloud Computing
Theory and Practice

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Steve Elliot
Editorial Project Manager: Lindsay Lawrence
Project Manager: Anitha Kittusamy Ramasamy
Cover Designer: Russell Purdy

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, 02451, USA

Copyright © 2013 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, or professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Application submitted

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12404-627-6

Printed in the United States of America

13  14  15  16  17    10  9  8  7  6  5  4  3  2  1

For information on all MK publications
visit our website at www.mkp.com

To Vera Rae and Luke Bell

This page is intentionally left blank

Preface�� xiii
Foreword��� xvii

CHAPTER 1	 Introduction��1
	 1.1	 Network-Centric Computing and Network-Centric Content��3
	 1.2	 Peer-to-Peer Systems��7
	 1.3	 Cloud Computing: An Old Idea Whose Time has Come��9
	 1.4	 Cloud Computing Delivery Models and Services��11
	 1.5	 Ethical Issues in Cloud Computing��14
	 1.6	 Cloud Vulnerabilities��15
	 1.7	 Major Challenges Faced by Cloud Computing��16
	 1.8	 Further Reading��17
	 1.9	 History Notes��18
	 1.10	 Exercises and Problems��18

CHAPTER 2	 Parallel and Distributed Systems��21
	 2.1	 Parallel Computing���21
	 2.2	 Parallel Computer Architecture��25
	 2.3	 Distributed Systems��27
	 2.4	 Global State of a Process Group���28
	 2.5	 Communication Protocols and Process Coordination��32
	 2.6	 Logical Clocks��34
	 2.7	 Message Delivery Rules; Causal Delivery��35
	 2.8	 Runs and Cuts; Causal History���38
	 2.9	 Concurrency��41
	 2.10	 Atomic Actions���44
	 2.11	 Consensus Protocols���48
	 2.12	 Modeling Concurrency with Petri Nets��51
	 2.13	 Enforced Modularity: The Client-Server Paradigm��57
	 2.14	 Further Reading��62
	 2.15	 History Notes��62
	 2.16	 Exercises and Problems��64

CHAPTER 3	 Cloud Infrastructure���67
	 3.1	 Cloud Computing at Amazon���67
	 3.2	 Cloud Computing: The Google Perspective���77

Contents

vii

viii Contents

	 3.3	 Microsoft Windows Azure and Online Services��79
	 3.4	 Open-Source Software Platforms for Private Clouds���80
	 3.5	 Cloud Storage Diversity and Vendor Lock-in���84
	 3.6	 Cloud Computing Interoperability: The Intercloud��86
	 3.7	 Energy Use and Ecological Impact of Large-Scale Data Centers������������������������������88
	 3.8	 Service- and Compliance-Level Agreements���91
	 3.9	 Responsibility Sharing Between User and Cloud Service Provider���������������������������92
	 3.10	 User Experience��93
	 3.11	 Software Licensing���95
	 3.12	 Further Reading��96
	 3.13	 History Notes��97
	 3.14	 Exercises and Problems��97

CHAPTER 4	 Cloud Computing: Applications and Paradigms������������������������������99
	 4.1	 Challenges for Cloud Computing���100
	 4.2	 Existing Cloud Applications and New Application Opportunities���������������������������101
	 4.3	 Architectural Styles for Cloud Applications���102
	 4.4	 Workflows: Coordination of Multiple Activities��104
	 4.5	 Coordination Based on a State Machine Model: The ZooKeeper����������������������������112
	 4.6	 The MapReduce Programming Model��115
	 4.7	 A Case Study: The GrepTheWeb Application���118
	 4.8	 Clouds for Science and Engineering���120
	 4.9	 High-Performance Computing on a Cloud���121
	 4.10	 Cloud Computing for Biology Research��125
	 4.11	 Social Computing, Digital Content, and Cloud Computing�������������������������������������128
	 4.12	 Further Reading��130
	 4.13	 Exercises and Problems��130

CHAPTER 5	 Cloud Resource Virtualization��131
	 5.1	 Virtualization��132
	 5.2	 Layering and Virtualization��133
	 5.3	 Virtual Machine Monitors���136
	 5.4	 Virtual Machines���136
	 5.5	 Performance and Security Isolation��139
	 5.6	 Full Virtualization and Paravirtualization���140
	 5.7	 Hardware Support for Virtualization��142
	 5.8	 Case Study: Xen, a VMM Based on Paravirtualization��144
	 5.9	 Optimization of Network Virtualization in Xen 2.0��149
	 5.10	� vBlades: Paravirtualization Targeting an x86-64 Itanium Processor������������������������152
	 5.11	 A Performance Comparison of Virtual Machines���154
	 5.12	 The Darker Side of Virtualization���156
	 5.13	 Software Fault Isolation��158

	 5.14	 Further Reading��159
	 5.15	 History Notes��159
	 5.16	 Exercises and Problems��160

CHAPTER 6	 Cloud Resource Management and Scheduling�����������������������������163
	 6.1	 Policies and Mechanisms for Resource Management��164
	 6.2	 Applications of Control Theory to Task Scheduling on a Cloud������������������������������166
	 6.3	 Stability of a Two-Level Resource Allocation Architecture�������������������������������������169
	 6.4	 Feedback Control Based on Dynamic Thresholds��171
	 6.5	 Coordination of Specialized Autonomic Performance Managers����������������������������172
	 6.6	 A Utility-Based Model for Cloud-Based Web Services���174
	 6.7	 Resource Bundling: Combinatorial Auctions for Cloud Resources�������������������������178
	 6.8	 Scheduling Algorithms for Computing Clouds��182
	 6.9	 Fair Queuing���184
	 6.10	 Start-Time Fair Queuing���185
	 6.11	 Borrowed Virtual Time���190
	 6.12	 Cloud Scheduling Subject to Deadlines���194
	 6.13	 Scheduling MapReduce Applications Subject to Deadlines�������������������������������������199
	 6.14	 Resource Management and Dynamic Application Scaling��������������������������������������201
	 6.15	 Further Reading��202
	 6.16	 Exercises and Problems��203

CHAPTER 7	 Networking Support���205
	 7.1	 Packet-Switched Networks���205
	 7.2	 The Internet���207
	 7.3	 Internet Migration to IPv6��210
	 7.4	 The Transformation of the Internet���211
	 7.5	 Web Access and the TCP Congestion Control Window���214
	 7.6	 Network Resource Management���217
	 7.7	 Interconnection Networks for Computer Clouds��219
	 7.8	 Storage Area Networks���222
	 7.9	 Content-Delivery Networks��226
	 7.10	 Overlay Networks and Small-World Networks��228
	 7.11	 Scale-Free Networks���230
	 7.12	 Epidemic Algorithms��236
	 7.13	 Further Reading��238
	 7.14	 History Notes��238
	 7.15	 Exercises and Problems��239

CHAPTER 8	 Storage Systems��241
	 8.1	 The Evolution of Storage Technology��242
	 8.2	 Storage Models, File Systems, and Databases��243

ixContents

Contentsx

	 8.3	 Distributed File Systems: The Precursors���246
	 8.4	 General Parallel File System��252
	 8.5	 Google File System���255
	 8.6	 Apache Hadoop��258
	 8.7	 Locks and Chubby: A Locking Service��260
	 8.8	 Transaction Processing and NoSQL Databases��264
	 8.9	 BigTable��266
	 8.10	 Megastore��268
	 8.11	 History Notes��269
	 8.12	 Further Reading��270
	 8.13	 Exercises and Problems��271

CHAPTER 9	 Cloud Security���273
	 9.1	 Cloud Security Risks��274
	 9.2	 Security: The Top Concern for Cloud Users���277
	 9.3	 Privacy and Privacy Impact Assessment���279
	 9.4	 Trust��281
	 9.5	 Operating System Security���283
	 9.6	 Virtual Machine Security��284
	 9.7	 Security of Virtualization��286
	 9.8	 Security Risks Posed by Shared Images���289
	 9.9	 Security Risks Posed by a Management OS���292
	 9.10	 Xoar: Breaking the Monolithic Design of the TCB���295
	 9.11	 A Trusted Virtual Machine Monitor���298
	 9.12	 Further Reading��299
	 9.13	 Exercises and Problems��299

CHAPTER 10	 Complex Systems and Self-Organization�������������������������������������301
	 10.1	 Complex Systems���301
	 10.2	� Abstraction and Physical Reality��303
	 10.3	� Quantifying Complexity���304
	 10.4	� Emergence and Self-Organization��306
	 10.5	� Composability Bounds and Scalability���308
	 10.6	� Modularity, Layering, and Hierarchy���310
	 10.7	� More on the Complexity of Computing and Communication Systems��������������������312
	 10.8	� Systems of Systems: Challenges and Solutions��314
	 10.9	� Further Reading��315
	 10.10	� Exercises and Problems��315

CHAPTER 11	 Cloud Application Development��317
	 11.1	� Amazon Web Services: EC2 Instances��318
	 11.2	� Connecting Clients to Cloud Instances Through Firewalls��������������������������������������319

	 11.3	� Security Rules for Application and Transport Layer Protocols
in EC2���324

	 11.4	� How to Launch an EC2 Linux Instance and Connect to it ���������������������������������������327
	 11.5	� How to Use S3 in Java��328
	 11.6	� How to Manage SQS Services in C#��331
	 11.7	� How to Install the Simple Notification Service on

Ubuntu 10.04��332
	 11.8	� How to Create an EC2 Placement Group and Use MPI���334
	 11.9	� How to Install Hadoop on Eclipse on a Windows System��336
	 11.10	� Cloud-Based Simulation of a Distributed Trust Algorithm��������������������������������������339
	 11.11	� A Trust Management Service���344
	 11.12	� A Cloud Service for Adaptive Data Streaming ��352
	 11.13	� Cloud-Based Optimal FPGA Synthesis��356
 	 11.14	 Exercises and Problems��357

Literature��361

Glossary��379

Index���385

xiContents

This page is intentionally left blank

The idea that computing may be organized as a public utility, like water and electricity, was formulated
in the 1960s by John McCarthy, a visionary computer scientist who championed mathematical logic in
artificial intelligence. Four decades later, utility computing was embraced by major IT companies such
as Amazon, Apple, Google, HP, IBM, Microsoft, and Oracle.

Cloud computing is a movement started sometime during the middle of the first decade of the new
millennium. The movement is motivated by the idea that information processing can be done more
efficiently on large farms of computing and storage systems accessible via the Internet. In this book
we attempt to sift through the large volume of information and dissect the main ideas related to cloud
computing.

Computer clouds support a paradigm shift from local to network-centric computing and network-
centric content, when computing and storage resources are provided by distant data centers. Scientific
and engineering applications, data mining, computational financing, gaming and social networking,
and many other computational and data-intensive activities can benefit from cloud computing. Storing
information “on the cloud’’ has significant advantages and was embraced by cloud service providers.
For example, in 2011 Apple announced the iCloud, a network-centric alternative for content such as
music, videos, movies, and personal information. Content previously confined to personal devices such
as workstations, laptops, tablets, and smart phones need no longer be stored locally, can be shared by
all these devices, and is accessible whenever a device is connected to the Internet.

The appeal of cloud computing is that it offers scalable and elastic computing and storage services.
The resources used for these services can be metered and the users can be charged only for the resources
they use. Cloud computing is a business reality today as increasing numbers of organizations are adopt-
ing this paradigm.

Cloud computing is cost effective because of the multiplexing of resources. Application data is stored
closer to the site where it is used in a manner that is device and location independent; potentially, this
data storage strategy increases reliability as well as security. The maintenance and security are ensured
by service providers; the service providers can operate more efficiently due to economy of scale.

Cloud computing is a technical and social reality today; at the same time, it is an emerging techno
logy. At this time one can only speculate how the infrastructure for this new paradigm will evolve and
what applications will migrate to it. The economic, social, ethical, and legal implications of this shift
in technology, whereby users rely on services provided by large data centers and store private data and
software on systems they do not control, are likely to be significant.

Cloud computing represents a dramatic shift in the design of systems capable of providing vast
amounts of computing cycles and storage space. During the previous four decades, one-of-a-kind
systems were built with the most advanced components available at the time at a high cost; but today
clouds use off-the shelf, low-cost components. Gordon Bell argued in the early 1990s that one-of-a-
kind systems are not only expensive to build, but the cost of rewriting applications for them is prohibi-
tive [45].

Cloud computing reinforces the idea that computing and communication are deeply intertwined.
Advances in one field are critical for the other. Indeed, cloud computing could not emerge as a feasible

Preface

xiii

alternative to the traditional paradigms for data-intensive applications before the Internet was able
to support high-bandwidth, low-latency, reliable, low-cost communication; at the same time, modern
networks could not function without powerful computing systems to manage them. High-performance
switches are critical elements of both networks and computer clouds.

There are virtually no bounds on composition of digital systems controlled by software, so we are
tempted to build increasingly complex systems. The behavior and the properties of such systems are
not always well understood; thus, we should not be surprised that computing clouds will occasionally
exhibit an unexpected behavior and system failures.

The architecture, the coordination algorithms, the design methodology, and the analysis techniques
for large-scale complex systems like computing clouds will evolve in response to changes in technol-
ogy, the environment, and the social impact of cloud computing. Some of these changes will reflect the
changes in the Internet itself in terms of speed, reliability, security, capacity to accommodate a larger
addressing space by migration to IPv6, and so on. In December 2011, 32.7% of the world population,
of slightly less than 7 billion, were Internet users, according to www.internetworldstats.com/stats.htm.
The 528% growth rate of Internet users during the period 2000–2011 is expected to be replicated if not
exceeded in the next decade. Some of these new Internet users will discover the appeal of computing
clouds and use cloud services explicitly, whereas a very large segment of the population will benefit
from services supported by computing clouds without knowing the role the clouds play in their lives.

A recent posting on ZDNet reveals that EC2 was made up of 454,600 servers in January 2012; when
one adds the number of servers supporting other AWS services, the total number of Amazon systems
dedicated to cloud computing is much larger. An unofficial estimation puts the number of servers used
by Google in January 2012 close to 1.8 million; this number was expected to be close to 2.4 million
by early 2013.

The complexity of such systems is unquestionable and raises questions such as: How can we man-
age such systems? Do we have to consider radically new ideas, such as self-management and self-
repair, for future clouds consisting of millions of servers? Should we migrate from a strictly determin-
istic view of such complex systems to a nondeterministic one? Answers to these questions provide a
rich set of research topics for the computer science and engineering community.

The cloud movement is not without skeptics and critics. The critics argue that cloud computing is
just a marketing ploy, that users may become dependent on proprietary systems, that the failure of a
large system such as the cloud could have significant consequences for a very large group of users who
depend on the cloud for their computing and storage needs. Security and privacy are major concerns
for cloud computing users.

The skeptics question what a cloud actually is, what is new, how does it differ from other types of
large-scale distributed systems, and why cloud computing could be successful when grid computing had
only limited success. The CEO of Oracle said, “I think the Internet was the last big change. The Internet
is maturing. They don’t call it the Internet anymore. They call it cloud computing.’’ In 2012, the Oracle
Cloud was announced; the website of the company acknowledges: “Cloud computing represents a
fantastic opportunity for technology companies to help customers simplify IT, that often-baffling and
always-changing sector of the corporate world that’s become increasingly valuable in today’s global
economy.’’

A very important question is whether, under pressure from the user community, the current stan-
dardization efforts spearheaded by the National Institute of Standards and Technology (NIST), will
succeed. The alternative, the continuing dominance of proprietary cloud computing environments, is

Prefacexiv

likely to have a negative impact on the field. The three cloud delivery models, Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), will continue to coexist for
the foreseeable future. Services based on SaaS will probably be increasingly popular because they are
more accessible to lay people, whereas services based on IaaS will be the domain of computer-savvy
individuals. If the standardization effort succeeds, we may see PaaS designed to migrate from one
infrastructure to another and overcome the concerns related to vendor lock-in.

This book attempts to provide a snapshot of the state of the art of a dynamic field likely to expe-
rience significant developments in the near future. The first chapter is an informal introduction to
network-centric computing and network-centric content, to the entities involved in cloud computing,
the paradigms and the services, and the ethical issues. Chapter 2 is a review of basic concepts in paral-
lel and distributed computing; the chapter covers a range of subjects, from the global state of a process
group to causal history, atomic actions, modeling concurrency with Petri nets, and consensus protocols.

The next two chapters address questions of interest for the users of cloud computing. The cloud
infrastructure is the subject of Chapter 3; we discuss the cloud services provided by Amazon, Google,
and Microsoft, then we analyze the open-source platforms for private clouds, service-level and
compliance-level agreements, and software licensing. Next we cover the energy use and the social
impact of large-scale data centers and the user experience. Chapter 4 discusses cloud applications; after
a brief review of workflows we analyze coordination using the Zookeeper and then the MapReduce
programming model. The applications of clouds in science and engineering, biology research, and
social computing are then discussed, followed by a presentations of benchmarks for high-performance
computing on a cloud.

Chapters 5 through 9 cover the architecture, algorithms, communication, storage, and cloud secu-
rity. Chapter 5 is dedicated to virtualization; we discuss virtual machines, virtual machine monitors,
architectural support for virtualization, and performance and security isolation and illustrate the con-
cepts with an in‑depth analysis of Xen and vBlades and with a performance comparison of virtual
machines. Chapter 5 closes with a discussion of virtual machine security and software fault isolation.

Resource management and scheduling are the topics of Chapter 6. First, we present a utility model
for cloud-based Web services, then we discuss the applications of control theory to scheduling, two-
level resource allocation strategies, and coordination of multiple autonomic performance mangers.
We emphasize the concept of resource bundling and introduce combinatorial auctions for cloud
resources. Next, we analyze fair queuing, start-time fair queuing, and borrowed virtual time scheduling
algorithms and cloud scheduling subject to deadlines.

Chapter 7 presents several aspects of networking pertinent to cloud computing. After a brief discus-
sion of the evolution of the Internet we review basic ideas regarding network resource management
strategies, interconnects for warehouse-scale computers, and storage area networks. Then we overview
content delivery networks and analyze in some depth overlay networks and their potential applications
to cloud computing. Finally, we discuss epidemic algorithms.

In Chapter 8 we discuss storage systems. First, we review the early distributed file systems of the
early 1980s: the Network File System developed by Sun Microsystems, the Andrew File System devel-
oped at Carnegie Mellon University as part of the Andrew project, and the Sprite Network File System
developed at University of California Berkeley as a component of the Unix-like distributed operating
system called Sprite. Then we present the General Parallel File System developed at IBM in the early
2000s. The in-depth discussions of the Google File System, the Bigtable, and the Megastore illustrate
the new challenges posed to the design of datastores by network-centric computing and network-centric

xvPreface

content and the shift from traditional relational database systems to databases capable of supporting
online transaction-processing systems.

Cloud security is covered in Chapter 9. After a general discussion of cloud security risks, privacy,
and trust, the chapter analyzes the security of virtualization and the security risks posed by shared
images and by the management operating system. The implementation of a hypervisor based on
microkernel design principles and a trusted virtual machine monitor are then presented.

Chapter 10 presents topics related to complex systems and self-organization. The chapter starts
with an introduction to complex systems, followed by an analysis of the relationship between abstrac-
tions and the physical reality. A review of the possible means to quantify complexity is followed by
a discussion of emergence and self-organization. The discussion of the complexity of computing and
communication systems starts with presentation of composability bound and scalability, followed by
other means to cope with complexity, including modularity, layering, and hierarchy. Finally we discuss
the challenges posed by systems of systems.

The last chapter of the book, Chapter 11, is dedicated to practical aspects of application develop-
ment. Here we are only concerned with applications developed for the Amazon Web Services (AWS).
The chapter starts with a discussion of security-related issues and the practical means of clients to
connect to cloud instances through firewalls. The chapter provides recipes for using different AWS
services; two AWS applications, one related to trust management in a cognitive network and the other
to adaptive data streaming to and from a cloud are discussed in detail.

More than 385 references are cited in the text. Many references present recent research results in
several areas related to cloud computing; others are classical references on major topics in parallel and
distributed systems. A glossary covers terms grouped in several categories, from general to services,
virtualization, desirable attributes, and security.

The history notes at the end of many chapters present the milestones in a particular field; they serve
as reminders of how recently important concepts, now considered classical in the field, have been
developed. They also show the impact of technological developments that have challenged the com-
munity and motivated radical changes in our thinking.

The contents of this book reflect a series of lectures given to graduate classes on cloud computing.
The applications discussed in Chapter 11 were developed by several students as follows: Tim Preston
contributed to 11.3; Shameek Bhattacharjee to 11.4, 11.10, and 11.11; Charles Schneider to 11.5;
Michael Riera to 11.6 and to 11.13; Kumiki Ogawa to 11.7; Wei Dai to 11.8; Gettha Priya Balasubra-
manian to 11.9; and Ashkan Paya to 11.2.

The author is grateful to several students who contributed ideas, suggested ways to improve the
manuscript, and helped identify and correct errors: David Adams, Ragu N. Aula, Surbhi Bhardwaj,
Solmaz Gurkan, Brendan Lynch, Kyle Martin, Bart Miller, Ganesh Sundaresan, and Paul Szerlip.
Special thanks to Ramya Pradhan and William Strickland for their insightful comments and
suggestions. The author wants to express his appreciation for the constant guidance and help provided
by Steve Elliot and Lindsay Lawrence from the publisher, Morgan Kaufmann. We also acknowledge
Gabriela Marinescu’s effort during the final stages of manuscript preparation.

Supplemental Materials
Supplemental materials for instructors or students can be downloaded from Elsevier: http://store.
elsevier.com/product.jsp?isbn=9780124046276

Prefacexvi

This book is a timely, comprehensive introduction to cloud computing. The phrase cloud computing,
which was almost never used a decade ago, is now part of the standard vocabulary. Millions of people
around the world use cloud services, and the numbers are growing rapidly. Even education is being
transformed in radical ways by cloud computing in the form of massive open online courses (MOOCs).
This book is particularly valuable at this time because the phrase cloud computing covers so many dif-
ferent types of computing services, and the many people participating in conversations about clouds
need to be aware of the space that it spans. The introductory material in this book explains the key con-
cepts of cloud computing and is accessible to almost everybody; such basic, but valuable, information
should be required reading for the many people who use some form of cloud computing today.

The book provides a signal service by describing the wide range of applications of cloud comput-
ing. Most people are aware of cloud services such as email and social networks, but many are not famil-
iar with its applications in science and medicine. Teams of scientists, collaborating around the world,
find that cloud computing is efficient. This book will help people dealing with a variety of applications
evaluate the benefit of cloud computing for their specific needs.

This book describes the wide range of cloud services available today and gives examples of services
from multiple vendors. The examples are particularly helpful because they give readers an idea of how
applications work on different platforms. The market for cloud computing is dynamic, and as time goes
on new vendors and new platforms will become available. The examples provided in the book will help
readers develop a framework for understanding and evaluating new platforms as they become available.

Cloud computing is based on many decades of work on parallel and distributed computing systems.
This book describes some of the central ideas in this work as it applies to cloud computing. Relatively
few books integrate theory with applications and with practical examples from a variety of vendors; this
book is an excellent source for the increasing numbers of students interested in the area.

Server farms consume an increasing amount of the nation’s energy. Sustainability requires mecha-
nisms for server farms to provide the same quality of cloud services while reducing the amount of
energy required. This book discusses this important issue as well as other critical issues such as security
and privacy. Indeed, this is an excellent single source for the range of critical issues in cloud computing.
The wide span of material covered, from the introductory to the advanced; the integration of theory and
practice; the range of applications; and the number of examples the book includes make this an excel-
lent book for a variety of readers.

K. Mani Chandi
Simon Ramo Professor and Professor of Computer Science,

California Institute of Technology

Foreword

xvii

This page is intentionally left blank

1
CHAPTER

Introduction

The last decades have reinforced the idea that information processing can be done more efficiently
centrally, on large farms of computing and storage systems accessible via the Internet. When com-
puting resources in distant data centers are used rather than local computing systems, we talk about
network-centric computing and network-centric content. Advancements in networking and other areas
are responsible for the acceptance of the two new computing models and led to the grid computing
movement in the early 1990s and, since 2005, to utility computing and cloud computing.

In utility computing the hardware and software resources are concentrated in large data centers and
users can pay as they consume computing, storage, and communication resources. Utility computing
often requires a cloud-like infrastructure, but its focus is on the business model for providing the
computing services. Cloud computing is a path to utility computing embraced by major IT companies
such as Amazon, Apple, Google, HP, IBM, Microsoft, Oracle, and others.

Cloud computing delivery models, deployment models, defining attributes, resources, and organiza-
tion of the infrastructure discussed in this chapter are summarized in Figure 1.1. There are three cloud
delivery models: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-
Service (IaaS), deployed as public, private, community, and hybrid clouds.

The defining attributes of the new philosophy for delivering computing services are as follows:

• Cloud computing uses Internet technologies to offer elastic services. The term elastic computing
refers to the ability to dynamically acquire computing resources and support a variable workload. A
cloud service provider maintains a massive infrastructure to support elastic services.

• The resources used for these services can be metered and the users can be charged only for the
resources they use.

• Maintenance and security are ensured by service providers.
• Economy of scale allows service providers to operate more efficiently due to specialization and

centralization.
• Cloud computing is cost-effective due to resource multiplexing; lower costs for the service provider

are passed on to the cloud users.
• The application data is stored closer to the site where it is used in a device- and location-independent

manner; potentially, this data storage strategy increases reliability and security and, at the same time,
it lowers communication costs.

Cloud computing is a technical and social reality and an emerging technology. At this time, one
can only speculate how the infrastructure for this new paradigm will evolve and what applications will
migrate to it. The economical, social, ethical, and legal implications of this shift in technology, in which
users rely on services provided by large data centers and store private data and software on systems
they do not control, are likely to be significant.
Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00001-4
© 2013 Elsevier Inc. All rights reserved.

1

2 CHAPTER 1 Introduction

Delivery models

Infrastructure-as-a-Service (IaaS)

Software-as-a-Service (SaaS)

Platform-as-a-Service (PaaS)

Deployment models

Private cloud

Hybrid cloud

Public cloud

Community cloud

Massive infrastructure

Accessible via the Internet

Utility computing. Pay-per-usage

Elasticity

Applications

Defining attributes

ServicesNetworks

Compute & storage servers

Resources

Cloud computing

Distributed infrastructure
Resource virtualization
Autonomous systems

Infrastructure

FIGURE 1.1

Cloud computing: Delivery models, deployment models, defining attributes, resources, and organization of
the infrastructure.

Scientific and engineering applications, data mining, computational financing, gaming, and social
networking as well as many other computational and data-intensive activities can benefit from cloud
computing. A broad range of data, from the results of high-energy physics experiments to financial or
enterprise management data to personal data such as photos, videos, and movies, can be stored on the
cloud.

In early 2011 Apple announced the iCloud, a network-centric alternative for storing content such
as music, videos, movies, and personal information; this content was previously confined to personal
devices such as workstations, laptops, tablets, or smartphones. The obvious advantage of network-
centric content is the accessibility of information from any site where users can connect to the Internet.
Clearly, information stored on a cloud can be shared easily, but this approach raises major concerns: Is
the information safe and secure? Is it accessible when we need it? Do we still own it?

In the next few years, the focus of cloud computing is expected to shift from building the infras-
tructure, today’s main front of competition among the vendors, to the application domain. This shift in
focus is reflected by Google’s strategy to build a dedicated cloud for government organizations in the
United States. The company states: “We recognize that government agencies have unique regulatory
and compliance requirements for IT systems, and cloud computing is no exception. So we’ve invested
a lot of time in understanding government’s needs and how they relate to cloud computing.”

In a discussion of technology trends, noted computer scientist Jim Gray emphasized that in 2003 the
cost of communication in a wide area network had decreased dramatically and will continue to do so.
Thus, it makes economical sense to store the data near the application [144] – in other words, to store

1.1 Network-Centric Computing and Network-Centric Content 3

it in the cloud where the application runs. This insight leads us to believe that several new classes of
cloud computing applications could emerge in the next few years [25].

As always, a good idea has generated a high level of excitement that translated into a flurry of publi-
cations – some of a scholarly depth, others with little merit or even bursting with misinformation. In this
book we attempt to sift through the large volume of information and dissect the main ideas related to
cloud computing. We first discuss applications of cloud computing and then analyze the infrastructure
for the technology.

Several decades of research in parallel and distributed computing have paved the way for cloud
computing. Through the years we have discovered the challenges posed by the implementation, as well
as the algorithmic level, and the ways to address some of them and avoid the others. Thus, it is important
to look back at the lessons we learned from this experience through the years; for this reason we start
our discussion with an overview of parallel computing and distributed systems.

1.1 Network-centric computing and network-centric content
The concepts and technologies for network-centric computing and content evolved through the years
and led to several large-scale distributed system developments:

• The Web and the semantic Web are expected to support composition of services (not necessarily
computational services) available on the Web.1

• The Grid, initiated in the early 1990s by National Laboratories and Universities, is used primarily
for applications in the area of science and engineering.

• Computer clouds, promoted since 2005 as a form of service-oriented computing by large IT com-
panies, are used for enterprise computing, high-performance computing, Web hosting, and storage
for network-centric content.

The need to share data from high-energy physics experiments motivated Sir Tim Berners-Lee, who
worked at the European Organization for Nuclear Research (CERN) in the late 1980s, to put together
the two major components of the World Wide Web: HyperText Markup Language (HTML) for data
description and HyperText Transfer Protocol (HTTP) for data transfer. The Web opened a new era in
data sharing and ultimately led to the concept of network-centric content.

The semantic Web2 is an effort to enable laypeople to more easily find, share, and combine infor-
mation available on the Web. In this vision, the information can be readily interpreted by machines,
so machines can perform more of the tedious work involved in finding, combining, and acting upon
information on the Web. Several technologies are necessary to provide a formal description of concepts,
terms, and relationships within a given knowledge domain; they include the Resource Description
Framework (RDF), a variety of data interchange formats, and notations such as RDF Schema (RDFS)
and the Web Ontology Language (OWL).

1The Web is dominated by unstructured or semistructured data, whereas the semantic Web advocates inclusion of semantic
content in Web pages.
2The term semantic Web was coined by Tim Berners-Lee to describe “a web of data that can be processed directly and indirectly
by machines.” It is a framework for data sharing among applications based on the Resource Description Framework (RDF).
The semantic Web is “largely unrealized,” according to Berners-Lee.

4 CHAPTER 1 Introduction

Gradually, the need to make computing more affordable and to liberate users from the concerns
regarding system and software maintenance reinforced the idea of concentrating computing resources
in data centers. Initially, these centers were specialized, each running a limited palette of software
systems as well as applications developed by the users of these systems. In the early 1980s major
research organizations such as the National Laboratories and large companies had powerful computing
centers supporting large user populations scattered throughout wide geographic areas. Then the idea
to link such centers in an infrastructure resembling the power grid was born; the model known as
network-centric computing was taking shape.

A computing grid is a distributed system consisting of a large number of loosely coupled, heteroge-
neous, and geographically dispersed systems in different administrative domains. The term computing
grid is a metaphor for accessing computer power with similar ease as we access power provided by the
electric grid. Software libraries known as middleware have been furiously developed since the early
1990s to facilitate access to grid services.

The vision of the grid movement was to give a user the illusion of a very large virtual supercomputer.
The autonomy of the individual systems and the fact that these systems were connected by wide-area
networks with latency higher than the latency of the interconnection network of a supercomputer posed
serious challenges to this vision. Nevertheless, several “Grand Challenge” problems, such as protein
folding, financial modeling, earthquake simulation, and climate and weather modeling, run successfully
on specialized grids. The Enabling Grids for Escience project is arguably the largest computing grid;
along with the LHC Computing Grid (LCG), the Escience project aims to support the experiments using
the Large Hadron Collider (LHC) at CERN which generate several gigabytes of data per second, or
10 PB (petabytes) per year.

In retrospect, two basic assumptions about the infrastructure prevented the grid movement from
having the impact its supporters were hoping for. The first is the heterogeneity of the individual systems
interconnected by the grid; the second is that systems in different administrative domains are expected to
cooperate seamlessly. Indeed, the heterogeneity of the hardware and of system software poses significant
challenges for application development and for application mobility. At the same time, critical areas
of system management, including scheduling, optimization of resource allocation, load balancing, and
fault tolerance, are extremely difficult in a heterogeneous system. The fact that resources are in different
administrative domains further complicates many already difficult problems related to security and
resource management. Although very popular in the science and engineering communities, the grid
movement did not address the major concerns of the enterprise computing communities and did not
make a noticeable impact on the IT industry.

Cloud computing is a technology largely viewed as the next big step in the development and deploy-
ment of an increasing number of distributed applications. The companies promoting cloud computing
seem to have learned the most important lessons from the grid movement. Computer clouds are typically
homogeneous. An entire cloud shares the same security, resource management, cost and other policies,
and last but not least, it targets enterprise computing. These are some of the reasons that several agencies
of the US Government, including Health and Human Services (HHS), the Centers for Disease Con-
trol (CDC), the National Aeronautics and Space Administration (NASA), the Navy’s Next Generation
Enterprise Network (NGEN), and the Defense Information Systems Agency (DISA), have launched
cloud computing initiatives and conduct actual system development intended to improve the efficiency
and effectiveness of their information processing needs.

1.1 Network-Centric Computing and Network-Centric Content 5

The term content refers to any type or volume of media, be it static or dynamic, monolithic or
modular, live or stored, produced by aggregation, or mixed. Information is the result of functions
applied to content. The creation and consumption of audio and visual content are likely to transform
the Internet to support increased quality in terms of resolution, frame rate, color depth, and stereoscopic
information, and it seems reasonable to assume that the Future Internet3 will be content-centric. The
content should be treated as having meaningful semantic connotations rather than a string of bytes;
the focus will be the information that can be extracted by content mining when users request named
data and content providers publish data objects. Content-centric routing will allow users to fetch the
desired data from the most suitable location in terms of network latency or download time. There are
also some challenges, such as providing secure services for content manipulation, ensuring global rights
management, control over unsuitable content, and reputation management.

Network-centric computing and network-centric content share a number of characteristics:

• Most applications are data-intensive. Computer simulation becomes a powerful tool for scientific
research in virtually all areas of science, from physics, biology, and chemistry to archeology. Sophisti-
cated tools for computer-aided design, such as Catia (Computer Aided Three-dimensional Interactive
Application), are widely used in the aerospace and automotive industries. The widespread use of sen-
sors contributes to increases in the volume of data. Multimedia applications are increasingly popular;
the ever-larger media increase the load placed on storage, networking, and processing systems.

• Virtually all applications are network-intensive. Indeed, transferring large volumes of data requires
high-bandwidth networks; parallel computing, computation steering,4 and data streaming are exam-
ples of applications that can only run efficiently on low-latency networks.

• The systems are accessed using thin clients running on systems with limited resources. In June 2011
Google released Google Chrome OS, designed to run on primitive devices and based on the browser
with the same name.

• The infrastructure supports some form of workflow management. Indeed, complex computational
tasks require coordination of several applications; composition of services is a basic tenet of Web 2.0.

The advantages of network-centric computing and network-centric content paradigms are, at the
same time, sources for concern; we discuss some of them:

• Computing and communication resources (CPU cycles, storage, network bandwidth) are shared and
resources can be aggregated to support data-intensive applications. Multiplexing leads to a higher
resource utilization; indeed, when multiple applications share a system, their peak demands for
resources are not synchronized and the average system utilization increases. On the other hand,
the management of large pools of resources poses new challenges as complex systems are subject
to phase transitions. New resource management strategies, such as self-organization, and decisions
based on approximate knowledge of the state of the system must be considered. Ensuring quality-of-
service (QoS) guarantees is extremely challenging in such environments because total performance
isolation is elusive.

3The term Future Internet is a generic concept referring to all research and development activities involved in the development
of new architectures and protocols for the Internet.
4Computation steering in numerical simulation means to interactively guide a computational experiment toward a region of
interest.

6 CHAPTER 1 Introduction

• Data sharing facilitates collaborative activities. Indeed, many applications in science, engineering,
and industrial, financial, and governmental applications require multiple types of analysis of shared
data sets and multiple decisions carried out by groups scattered around the globe. Open software
development sites are another example of such collaborative activities. Data sharing poses not only
security and privacy challenges but also requires mechanisms for access control by authorized users
and for detailed logs of the history of data changes.

• Cost reduction. Concentration of resources creates the opportunity to pay as you go for computing
and thus eliminates the initial investment and reduces significantly the maintenance and operation
costs of the local computing infrastructure.

• User convenience and elasticity, that is the ability to accommodate workloads with very large peak-
to-average ratios.

It is very hard to point out a single technological or architectural development that triggered the
movement toward network-centric computing and network-centric content. This movement is the result
of a cumulative effect of developments in microprocessor, storage, and networking technologies coupled
with architectural advancements in all these areas and, last but not least, with advances in software
systems, tools, programming languages, and algorithms to support distributed and parallel computing.

Through the years we have witnessed the breathtaking evolution of solid-state technologies which
led to the development of multicore and many-core processors. Quad-core processors such as the AMD
Phenom II X4, the Intel i3, i5, and i7 and hexa-core processors such as the AMD Phenom II X6 and Intel
Core i7 Extreme Edition 980X are now used in the servers populating computer clouds. The proximity
of multiple cores on the same die allows the cache coherency circuitry to operate at a much higher clock
rate than would be possible if the signals were to travel off-chip.

Storage technology has also evolved dramatically. For example, solid-state disks such as RamSan-
440 allow systems to manage very high transaction volumes and larger numbers of concurrent users.
RamSan-440 uses DDR2 (double-data-rate) RAM to deliver 600,000 sustained random input/output
operations per second (IOPS) and over 4 GB/s of sustained random read or write bandwidth, with
latency of less than 15 microseconds, and it is available in 256 GB and 512 GB configurations. The
price of memory has dropped significantly; at the time of this writing the price of a 1 GB module for a
PC is approaching $10. Optical storage technologies and Flash memories are widely used nowadays.

The thinking in software engineering has also evolved and new models have emerged. The three-tier
model is a software architecture and a software design pattern. The presentation tier is the topmost
level of the application; typically, it runs on a desktop PC or workstation, uses a standard graphical user
interface (GUI) and displays information related to services such as browsing merchandise, purchasing
products, and managing shopping cart contents. The presentation tier communicates with other tiers by
sending the results to the browser/client tier and all other tiers in the network. The application/logic tier
controls the functionality of an application and may consist of one or more separate modules running
on a workstation or application server; it may be multitiered itself, in which case the architecture is
called an n-tier architecture. The data tier controls the servers where the information is stored; it runs
a relational database management system (RDBMS) on a database server or a mainframe and con-
tains the computer data storage logic. The data tier keeps data independent from application servers or
processing logic and improves scalability and performance. Any of the tiers can be replaced indepen-
dently; for example, a change of operating system in the presentation tier would only affect the user
interface code.

1.2 Peer-to-Peer Systems 7

1.2 Peer-to-peer systems
The distributed systems discussed in Chapter 2 allow access to resources in a tightly controlled envi-
ronment. System administrators enforce security rules and control the allocation of physical rather than
virtual resources. In all models of network-centric computing prior to utility computing, a user maintains
direct control of the software and the data residing on remote systems.

This user-centric model, in place since the early 1960s, was challenged in the 1990s by the peer-to-
peer (P2P) model. P2P systems can be regarded as one of the precursors of today’s clouds. This new
model for distributed computing promoted the idea of low-cost access to storage and central processing
unit (CPU) cycles provided by participant systems; in this case, the resources are located in different
administrative domains. Often the P2P systems are self-organizing and decentralized, whereas the
servers in a cloud are in a single administrative domain and have a central management.

P2P systems exploit the network infrastructure to provide access to distributed computing resources.
Decentralized applications developed in the 1980s, such as Simple Mail Transfer Protocol (SMTP), a
protocol for email distribution, and Network News Transfer Protocol (NNTP), an application protocol
for dissemination of news articles, are early examples of P2P systems. Systems developed in the late
1990s, such as the music-sharing system Napster, gave participants access to storage distributed over
the network, while the first volunteer-based scientific computing, SETI@home, used free cycles of
participating systems to carry out compute-intensive tasks.

The P2P model represents a significant departure from the client-server model, the cornerstone of
distributed applications for several decades. P2P systems have several desirable properties [306]:

• They require a minimally dedicated infrastructure, since resources are contributed by the participat-
ing systems.

• They are highly decentralized.
• They are scalable; the individual nodes are not required to be aware of the global state.
• They are resilient to faults and attacks, since few of their elements are critical for the delivery of

service and the abundance of resources can support a high degree of replication.
• Individual nodes do not require excessive network bandwidth the way servers used in case of the

client-server model do.
• Last but not least, the systems are shielded from censorship due to the dynamic and often unstructured

system architecture.

The undesirable properties of peer-to-peer systems are also notable: Decentralization raises the
question of whether P2P systems can be managed effectively and provide the security required by
various applications. The fact that they are shielded from censorship makes them a fertile ground for
illegal activities, including distribution of copyrighted content.

In spite of its problems, the new paradigm was embraced by applications other than file sharing. Since
1999 new P2P applications such as the ubiquitous Skype, a Voice-over-Internet Protocol (VoIP) tele-
phony service,5 data-streaming applications such as Cool Streaming [386] and BBC’s online video

5Skype allows close to 700 million registered users from many countries around the globe to communicate using a proprietary
VoIP protocol. The system developed in 2003 by Niklas Zennström and Julius Friis was acquired by Microsoft in 2011 and
nowadays is a hybrid P2P and client-server system.

8 CHAPTER 1 Introduction

service, content distribution networks such as CoDeeN [368], and volunteer computing applica-
tions based on the Berkeley Open Infrastructure for Networking Computing (BOINC) platform [21]
have proved their appeal to users. For example, Skype reported in 2008 that 276 million regis-
tered Skype users have used more than 100 billion minutes for voice and video calls. The site
www.boinc.berkeley.edu reports that at the end of June 2012 volunteer computing involved
more than 275,000 individuals and more than 430,000 computers providing a monthly average of
almost 6.3 petaFLOPS. It is also reported that peer-to-peer traffic accounts for a very large fraction of
Internet traffic, with estimates ranging from 40% to more than 70%.

Many groups from industry and academia rushed to develop and test new ideas, taking advantage
of the fact that P2P applications do not require a dedicated infrastructure. Applications such as Chord
[334] and Credence [366] address issues critical to the effective operation of decentralized systems.
Chord is a distributed lookup protocol to identify the node where a particular data item is stored. The
routing tables are distributed and, whereas other algorithms for locating an object require the nodes to
be aware of most of the nodes of the network, Chord maps a key related to an object to a node of the
network using routing information about a few nodes only.

Credence is an object reputation and ranking scheme for large-scale P2P file-sharing systems. Repu-
tation is of paramount importance for systems that often include many unreliable and malicious nodes.
In the decentralized algorithm used by Credence, each client uses local information to evaluate the repu-
tation of other nodes and shares its own assessment with its neighbors. The credibility of a node depends
only on the votes it casts; each node computes the reputation of another node based solely on the degree
of matching with its own votes and relies on like-minded peers. Overcite [337] is a P2P application to
aggregate documents based on a three-tier design. The Web front-ends accept queries and display the
results while servers crawl through the Web to generate indexes and to perform keyword searches; the
Web back-ends store documents, meta-data, and coordination state on the participating systems.

The rapid acceptance of the new paradigm triggered the development of a new communication
protocol allowing hosts at the network periphery to cope with the limited network bandwidth available
to them. BitTorrent is a peer-to-peer file-sharing protocol that enables a node to download/upload large
files from/to several hosts simultaneously.

The P2P systems differ in their architecture. Some do not have any centralized infrastructure, whereas
others have a dedicated controller, but this controller is not involved in resource-intensive operations.
For example, Skype has a central site to maintain user accounts; users sign in and pay for specific
activities at this site. The controller for a BOINC platform maintains membership and is involved in
task distribution to participating systems. The nodes with abundant resources in systems without any
centralized infrastructure often act as supernodes and maintain information useful to increasing the
system efficiency, such as indexes of the available content.

Regardless of the architecture, P2P systems are built around an overlay network, a virtual network
superimposed over the real network. Methods to construct such an overlay, discussed in Section 7.10,
consider a graph G = (V , E), where V is the set of N vertices and E is the set of links between them.

Each node maintains a table of overlay links connecting it with other nodes of this virtual network,
each node being identified by its IP address. Two types of overlay networks, unstructured and structured,
are used by P2P systems. Random walks starting from a few bootstrap nodes are usually used by
systems desiring to join an unstructured overlay. Each node of a structured overlay has a unique key that
determines its position in the structure; the keys are selected to guarantee a uniform distribution in a

1.3 Cloud Computing: An Old Idea Whose Time Has Come 9

very large name space. Structured overlay networks use key-based routing (KBR); given a starting node
v0 and a key k, the function K B R(v0, k) returns the path in the graph from v0 to the vertex with key k.
Epidemic algorithms discussed in Section 7.12 are often used by unstructured overlays to disseminate
network topology.

1.3 Cloud computing: an old idea whose time has come
Once the technological elements were in place, it was only a matter of time until the economical
advantages of cloud computing became apparent. Due to the economy of scale, large data centers –
centers with more than 50,000 systems – are more economical to operate than medium-sized centers
that have around 1,000 systems. Large data centers equipped with commodity computers experience
a five to seven times decrease of resource consumption, including energy, compared to medium-sized
centers [25]. The networking costs, in dollars per Mbit/s/month, are 95/13 = 7.1 times larger, and the
storage costs, in dollars per Gbyte/month, are 2.2/0.4 = 5.7 times larger for medium-sized centers.
Medium-sized centers have a larger administrative overhead – one system administrator for 140 systems
versus one for 1,000 systems for large centers.

Data centers are very large consumers of electric energy to keep servers and the networking infras-
tructure running and for cooling. For example, there are 6,000 data centers in the United States and in
2006 they reportedly consumed 61 billion KWh, 1.5% of all electric energy in the U.S., at a cost of
$4.5 billion. The power demanded by data centers was predicted to double from 2006 to 2011. Peak
instantaneous demand was predicted to increase from 7 GW in 2006 to 12 GW in 2011, requiring the
construction of 10 new power plants. In the United States the energy costs differ from state to state;
for example 1 KWh costs 3.6 cents in Idaho, 10 cents in California, and 18 cents in Hawaii. Thus, data
centers should be placed at sites with low energy cost.

The term computer cloud is overloaded, since it covers infrastructures of different sizes, with different
management and different user populations. Several types of cloud are envisioned:

• Private cloud. The infrastructure is operated solely for an organization. It may be managed by the
organization or a third party and may exist on or off the premises of the organization.

• Community cloud. The infrastructure is shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security requirements, policy, and compliance
considerations). It may be managed by the organizations or a third party and may exist on premises
or off premises.

• Public cloud. The infrastructure is made available to the general public or a large industry group
and is owned by an organization selling cloud services.

• Hybrid cloud. The infrastructure is a composition of two or more clouds (private, community, or
public) that remain unique entities but are bound together by standardized or proprietary technology
that enables data and application portability (e.g., cloud bursting for load balancing between clouds).

A private cloud could provide the computing resources needed for a large organization, such as a
research institution, a university, or a corporation. The argument that a private cloud does not support
utility computing is based on the observation that an organization has to invest in the infrastructure and
a user of a private cloud pays as it consumes resources [25]. Nevertheless, a private cloud could use the

10 CHAPTER 1 Introduction

same hardware infrastructure as a public one; its security requirements will be different from those for
a public cloud and the software running on the cloud is likely to be restricted to a specific domain.

A natural question to ask is: Why could cloud computing be successful when other paradigms
have failed? The reasons that cloud computing could be successful can be grouped into several general
categories: technological advances, a realistic system model, user convenience, and financial advantages.
A nonexhaustive list of reasons for the success of cloud computing includes these points:

• Cloud computing is in a better position to exploit recent advances in software, networking, storage,
and processor technologies. Cloud computing is promoted by large IT companies where these new
technological developments take place, and these companies have a vested interest in promoting the
new technologies.

• A cloud consists of a homogeneous set of hardware and software resources in a single administrative
domain. In this setup, security, resource management, fault tolerance, and quality of service are less
challenging than in a heterogeneous environment with resources in multiple administrative domains.

• Cloud computing is focused on enterprise computing; its adoption by industrial organizations, finan-
cial institutions, healthcare organizations, and so on has a potentially huge impact on the economy.

• A cloud provides the illusion of infinite computing resources; its elasticity frees application designers
from the confinement of a single system.

• A cloud eliminates the need for up-front financial commitment, and it is based on a pay-as-you-go
approach. This has the potential to attract new applications and new users for existing applications,
fomenting a new era of industrywide technological advancements.

In spite of the technological breakthroughs that have made cloud computing feasible, there are still
major obstacles for this new technology; these obstacles provide opportunity for research. We list a few
of the most obvious obstacles:

• Availability of service. What happens when the service provider cannot deliver? Can a large company
such as General Motors move its IT to the cloud and have assurances that its activity will not be
negatively affected by cloud overload? A partial answer to this question is provided by service-level
agreements (SLAs).6 A temporary fix with negative economical implications is overprovisioning,
that is, having enough resources to satisfy the largest projected demand.

• Vendor lock-in. Once a customer is hooked to one provider, it is hard to move to another. The
standardization efforts at National Institute of Standards and Technology (NIST) attempt to address
this problem.

• Data confidentiality and auditability. This is indeed a serious problem; we analyze it in Chapter 9.
• Data transfer bottlenecks. Many applications are data-intensive. A very important strategy is to store

the data as close as possible to the site where it is needed. Transferring 1 TB of data on a 1 Mbps
network takes 8 million seconds, or about 10 days; it is faster and cheaper to use courier service
and send data recoded on some media than to send it over the network. Very high-speed networks
will alleviate this problem in the future; for example, a 1 Gbps network would reduce this time to
8,000 s, or slightly more than 2 h.

6SLAs are discussed in Section 3.8.

1.4 Cloud Computing Delivery Models and Services 11

• Performance unpredictability. This is one of the consequences of resource sharing. Strategies for
performance isolation are discussed in Section 5.5.

• Elasticity, the ability to scale up and down quickly. New algorithms for controlling resource allocation
and workload placement are necessary. Autonomic computing based on self-organization and self-
management seems to be a promising avenue.

There are other perennial problems with no clear solutions at this time, including software licensing
and system bugs.

1.4 Cloud computing delivery models and services
According to the NIST reference model in Figure 1.2 [260], the entities involved in cloud computing
are the service consumer, the entity that maintains a business relationship with and uses service from
service providers; the service provider, the entity responsible for making a service available to service
consumers; the carrier, the intermediary that provides connectivity and transport of cloud services
between providers and consumers; the broker, an entity that manages the use, performance, and delivery
of cloud services and negotiates relationships between providers and consumers; and the auditor, a party
that can conduct independent assessment of cloud services, information system operations, performance,
and security of the cloud implementation. An audit is a systematic evaluation of a cloud system that
measures how well it conforms to a set of established criteria. For example, a security audit evaluates

Carrier

S
e
c
u
r
i
t
y

P
r
i
v
a
c
y

Service
Consumer BrokerService Provider

Auditor

Security
audit

Privacy
impact audit

Performance
audit

Service
Management

Business
support

Provisioning

Portability/
Interoperability

IAAS
IaaS

SaaS

Service Layer

PaaS

Carrier

Hardware

Facility

Physical resource
layer

Resource
abstraction and

control layer

Intermediation

Aggregation

Arbitrage

FIGURE 1.2

The entities involved in service-oriented computing and, in particular, in cloud computing, according to NIST.
The carrier provides connectivity among service providers, service consumers, brokers, and auditors.

12 CHAPTER 1 Introduction

cloud security, a privacy-impact audit evaluates cloud privacy assurance, and a performance audit
evaluates cloud performance.

We start with the observation that it is difficult to distinguish the services associated with cloud
computing from those that any computer operations center would include [332]. Many of the services
discussed in this section could be provided by a cloud architecture, but note that they are available in
noncloud architectures as well.

Figure 1.3 presents the structure of the three delivery models, SaaS, PaaS, and IaaS, according to
the Cloud Security Alliance [98].

Software-as-a-Service (SaaS) gives the capability to use applications supplied by the service provider
in a cloud infrastructure. The applications are accessible from various client devices through a thin-client

Facilities

Hardware

C
ore

connectivity

Abstraction

API

Facilities

Hardware

C
ore

connectivity

Abstraction

API

Integration and
middleware

Data Metadata

Applications

API

Presentation

Facilities

Hardware

C
ore

connectivity

Abstraction

API

Integration and
middleware

Infrastructure-as-a-Service

Platform-as-a-Service

Software-as-a-Service

FIGURE 1.3

The structure of the three delivery models, SaaS, PaaS, and IaaS. SaaS gives users the capability to use
applications supplied by the service provider but allows no control of the platform or the infrastructure. PaaS
gives the capability to deploy consumer-created or acquired applications using programming languages and
tools supported by the provider. IaaS allows the user to deploy and run arbitrary software, which can include
operating systems and applications.

1.4 Cloud Computing Delivery Models and Services 13

interface such as a Web browser (e.g., Web-based email). The user does not manage or control the under-
lying cloud infrastructure, including network, servers, operating systems, storage, or even individual
application capabilities, with the possible exception of limited user-specific application configuration
settings. Services offered include:

• Enterprise services such as workflow management, groupware and collaborative, supply chain,
communications, digital signature, customer relationship management (CRM), desktop software,
financial management, geo-spatial, and search [32].

• Web 2.0 applications such as metadata management, social networking, blogs, wiki services, and
portal services.

The SaaS is not suitable for applications that require real-time response or those for which data is
not allowed to be hosted externally. The most likely candidates for SaaS are applications for which:

• Many competitors use the same product, such as email.
• Periodically there is a significant peak in demand, such as billing and payroll.
• There is a need for Web or mobile access, such as mobile sales management software.
• There is only a short-term need, such as collaborative software for a project.

Platform-as-a-Service (PaaS) gives the capability to deploy consumer-created or acquired applica-
tions using programming languages and tools supported by the provider. The user does not manage
or control the underlying cloud infrastructure, including network, servers, operating systems, or stor-
age. The user has control over the deployed applications and, possibly, over the application hosting
environment configurations. Such services include session management, device integration, sandboxes,
instrumentation and testing, contents management, knowledge management, and Universal Description,
Discovery, and Integration (UDDI), a platform-independent Extensible Markup Language (XML)-based
registry providing a mechanism to register and locate Web service applications.

PaaS is not particulary useful when the application must be portable, when proprietary programming
languages are used, or when the underlaying hardware and software must be customized to improve
the performance of the application. The major PaaS application areas are in software development
where multiple developers and users collaborate and the deployment and testing services should be
automated.

Infrastructure-as-a-Service (IaaS) is the capability to provision processing, storage, networks, and
other fundamental computing resources; the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The consumer does not manage or control the
underlying cloud infrastructure but has control over operating systems, storage, deployed applications,
and possibly limited control of some networking components, such as host firewalls. Services offered
by this delivery model include: server hosting, Web servers, storage, computing hardware, operating
systems, virtual instances, load balancing, Internet access, and bandwidth provisioning.

The IaaS cloud computing delivery model has a number of characteristics, such as the fact that the
resources are distributed and support dynamic scaling, it is based on a utility pricing model and variable
cost, and the hardware is shared among multiple users. This cloud computing model is particulary useful
when the demand is volatile and a new business needs computing resources and does not want to invest
in a computing infrastructure or when an organization is expanding rapidly.

14 CHAPTER 1 Introduction

A number of activities are necessary to support the three delivery models; they include:

1. Service management and provisioning, including virtualization, service provisioning, call center,
operations management, systems management, QoS management, billing and accounting, asset
management, SLA management, technical support, and backups.

2. Security management, including ID and authentication, certification and accreditation, intrusion
prevention, intrusion detection, virus protection, cryptography, physical security, incident response,
access control, audit and trails, and firewalls.

3. Customer services such as customer assistance and online help, subscriptions, business intelligence,
reporting, customer preferences, and personalization.

4. Integration services, including data management and development.

This list shows that a service-oriented architecture involves multiple subsystems and complex inter-
actions among these subsystems. Individual subsystems can be layered; for example, in Figure 1.2 we
see that the service layer sits on top of a resource abstraction layer, which controls the physical resource
layer.

1.5 Ethical issues in cloud computing
Cloud computing is based on a paradigm shift with profound implications for computing ethics. The
main elements of this shift are: (i) the control is relinquished to third-party services; (ii) the data is
stored on multiple sites administered by several organizations; and (iii) multiple services interoperate
across the network.

Unauthorized access, data corruption, infrastructure failure, and service unavailability are some of
the risks related to relinquishing the control to third-party services; moreover, whenever a problem
occurs, it is difficult to identify the source and the entity causing it. Systems can span the boundaries
of multiple organizations and cross security borders, a process called deperimeterization. As a result of
deperimeterization, “not only the border of the organization’s IT infrastructure blurs, also the border of
the accountability becomes less clear” [350].

The complex structure of cloud services can make it difficult to determine who is responsible in
case something undesirable happens. In a complex chain of events or systems, many entities contribute
to an action, with undesirable consequences. Some of them have the opportunity to prevent these
consequences, and therefore no one can be held responsible – the so-called “problem of many hands.”

Ubiquitous and unlimited data sharing and storage among organizations test the self-determination
of information, the right or ability of individuals to exercise personal control over the collection, and
use and disclosure of their personal data by others; this tests the confidence and trust in today’s evolving
information society. Identity fraud and theft are made possible by the unauthorized access to personal
data in circulation and by new forms of dissemination through social networks, which could also pose
a danger to cloud computing.

Cloud service providers have already collected petabytes of sensitive personal information stored in
data centers around the world. The acceptance of cloud computing therefore will be determined by pri-
vacy issues addressed by these companies and the countries where the data centers are located. Privacy
is affected by cultural differences; though some cultures favor privacy, other cultures emphasize com-
munity, and this leads to an ambivalent attitude toward privacy on the Internet, which is a global system.

1.6 Cloud Vulnerabilities 15

The question of what can be done proactively about ethics of cloud computing does not have easy
answers; many undesirable phenomena in cloud computing will only appear in time. However, the need
for rules and regulations for the governance of cloud computing is obvious. The term governance means
the manner in which something is governed or regulated, the method of management, or the system of
regulations. Explicit attention to ethics must be paid by governmental organizations providing research
funding for cloud computing; private companies are less constrained by ethics oversight and governance
arrangements are more conducive to profit generation.

Accountability is a necessary ingredient of cloud computing; adequate information about how data
is handled within the cloud and about allocation of responsibility are key elements for enforcing ethics
rules in cloud computing. Recorded evidence allows us to assign responsibility; but there can be tension
between privacy and accountability, and it is important to establish what is being recorded and who
has access to the records.

Unwanted dependency on a cloud service provider, the so-called vendor lock-in, is a serious concern,
and the current standardization efforts at NIST attempt to address this problem. Another concern for users
is a future with only a handful of companies that dominate the market and dictate prices and policies.

1.6 Cloud vulnerabilities
Clouds are affected by malicious attacks and failures of the infrastructure (e.g., power failures). Such
events can affect Internet domain name servers and prevent access to a cloud or can directly affect
the clouds. For example, an attack at Akamai on June 15, 2004 caused a domain name outage and a
major blackout that affected Google, Yahoo!, and many other sites. In May 2009 Google was the target
of a serious denial-of-service (DoS) attack that took down services such Google News and Gmail for
several days.

Lightning caused a prolonged downtime at Amazon on June 29 and 30, 2012; the AWS cloud in the
Eastern region of the United States, which consists of 10 data centers across four availability zones,
was initially troubled by utility power fluctuations, probably caused by an electrical storm. A June 29,
2012 storm on the East Coast took down some Virginia-based Amazon facilities and affected companies
using systems exclusively in this region. Instagram, a photo-sharing service, was one of the victims of
this outage, according to http://mashable.com/2012/06/30/aws-instagram/.

The recovery from the failure took a very long time and exposed a range of problems. For example,
one of the 10 centers failed to switch to backup generators before exhausting the power that could be
supplied by uninterruptible power supply (UPS) units. AWS uses “control planes” to allow users to
switch to resources in a different region, and this software component also failed. The booting process
was faulty and extended the time to restart EC2 (Elastic Computing) and EBS (Elastic Block Store)
services. Another critical problem was a bug in the elastic load balancer (ELB), which is used to route
traffic to servers with available capacity. A similar bug affected the recovery process of the Relational
Database Service (RDS). This event brought to light “hidden” problems that occur only under special
circumstances.

A recent paper [126] identifies stability risks due to interacting services. A cloud application provider,
a cloud storage provider, and a network provider could implement different policies, and the unpre-
dictable interactions between load-balancing and other reactive mechanisms could lead to dynamic
instabilities. The unintended coupling of independent controllers that manage the load, the power

16 CHAPTER 1 Introduction

consumption, and the elements of the infrastructure could lead to undesirable feedback and instability
similar to the ones experienced by the policy-based routing in the Internet Border Gateway Protocol
(BGP). For example, the load balancer of an application provider could interact with the power optimizer
of the infrastructure provider. Some of these couplings may only manifest under extreme conditions and
be very hard to detect under normal operating conditions, but they could have disastrous consequences
when the system attempts to recover from a hard failure, as in the case of the AWS 2012 failure.

Clustering the resources in data centers located in different geographical areas is one of the means
used today to lower the probability of catastrophic failures. This geographic dispersion of resources could
have additional positive side effects; it can reduce communication traffic and energy costs by dispatching
the computations to sites where the electric energy is cheaper, and it can improve performance by an
intelligent and efficient load-balancing strategy. Sometimes a user has the option to decide where to
run an application; we shall see in Section 3.1 that an AWS user has the option to choose the regions
where the instances of his or her applications will run, as well as the regions of the storage sites. System
objectives (e.g., maximize throughput, resource utilization, and financial benefits) have to be carefully
balanced with user needs (e.g., low cost and response time and maximum availability).

The price to pay for any system optimization is increased system complexity, as we shall see in
Section 10.7. For example, the latency of communication over a wide area network (WAN) is con-
siderably larger than the one over a local area network (LAN) and requires the development of new
algorithms for global decision making.

1.7 Major challenges faced by cloud computing
Cloud computing inherits some of the challenges of parallel and distributed computing discussed in
Chapter 2; at the same time, it faces major challenges of its own. The specific challenges differ for
the three cloud delivery models, but in all cases the difficulties are created by the very nature of utility
computing, which is based on resource sharing and resource virtualization and requires a different trust
model than the ubiquitous user-centric model we have been accustomed to for a very long time.

The most significant challenge is security [19]; gaining the trust of a large user base is critical for
the future of cloud computing. It is unrealistic to expect that a public cloud will provide a suitable
environment for all applications. Highly sensitive applications related to the management of the critical
infrastructure, healthcare applications, and others will most likely be hosted by private clouds. Many
real-time applications will probably still be confined to private clouds. Some applications may be best
served by a hybrid cloud setup; such applications could keep sensitive data on a private cloud and use
a public cloud for some of the processing.

The SaaS model faces similar challenges as other online services required to protect private infor-
mation, such as financial or healthcare services. In this case a user interacts with cloud services through
a well-defined interface; thus, in principle it is less challenging for the service provider to close some of
the attack channels. Still, such services are vulnerable to DoS attack and the users are fearful of mali-
cious insiders. Data in storage is most vulnerable to attack, so special attention should be devoted to the
protection of storage servers. Data replication necessary to ensure continuity of service in case of storage
system failure increases vulnerability. Data encryption may protect data in storage, but eventually data
must be decrypted for processing, and then it is exposed to attack.

1.8 Further Reading 17

The IaaS model is by far the most challenging to defend against attacks. Indeed, an IaaS user has
considerably more degrees of freedom than the other two cloud delivery models. An additional source
of concern is that the considerable resources of a cloud could be used to initiate attacks against the
network and the computing infrastructure.

Virtualization is a critical design option for this model, but it exposes the system to new sources of
attack. The trusted computing base (TCB) of a virtual environment includes not only the hardware and
the hypervisor but also the management operating system. As we shall see in Section 9.7, the entire
state of a virtual machine (VM) can be saved to a file to allow migration and recovery, both highly
desirable operations; yet this possibility challenges the strategies to bring the servers belonging to an
organization to a desirable and stable state. Indeed, an infected VM can be inactive when the systems
are cleaned up, and it can wake up later and infect other systems. This is another example of the deep
intertwining of desirable and undesirable effects of basic cloud computing technologies.

The next major challenge is related to resource management on a cloud. Any systematic rather than
ad hoc resource management strategy requires the existence of controllers tasked to implement several
classes of policies: admission control, capacity allocation, load balancing, energy optimization, and last
but not least, to provide QoS guarantees.

To implement these policies the controllers need accurate information about the global state of the
system. Determining the state of a complex system with 106 servers or more, distributed over a large
geographic area, is not feasible. Indeed, the external load, as well as the state of individual resources,
changes very rapidly. Thus, controllers must be able to function with incomplete or approximate knowl-
edge of the system state.

It seems reasonable to expect that such a complex system can only function based on self-management
principles. But self-management and self-organization raise the bar for the implementation of logging
and auditing procedures critical to the security and trust in a provider of cloud computing services.
Under self-management it becomes next to impossible to identify the reasons that a certain action that
resulted in a security breach was taken.

The last major challenge we want to address is related to interoperability and standardization. Vendor
lock-in, the fact that a user is tied to a particular cloud service provider, is a major concern for cloud
users (see Section 3.5). Standardization would support interoperability and thus alleviate some of the
fears that a service critical for a large organization may not be available for an extended period of time.
But imposing standards at a time when a technology is still evolving is not only challenging, it can be
counterproductive because it may stifle innovation.

From this brief discussion the reader should realize the complexity of the problems posed by cloud
computing and understand the wide range of technical and social problems cloud computing raises. If
successful, the effort to migrate the IT activities of many government agencies to public and private
clouds will have a lasting effect on cloud computing. Cloud computing can have a major impact on
education, but we have seen little effort in this area.

1.8 Further reading
A very good starting point for understanding the major issues in cloud computing is the 2009 paper
“Above the clouds: a Berkeley view of cloud computing” [25]. A comprehensive survey of peer-to-peer
systems was published in 2010 [306]. Content distribution systems are discussed in [368]. The BOINC

18 CHAPTER 1 Introduction

platform is presented in [21]. Chord [334] and Credence [366] are important references in the area of
peer-to-peer systems.

Ethical issues in cloud computing are discussed in [350]. A recent book covers topics in the area of
distributed systems, including grids, peer-to-peer systems, and clouds [173].

The standardization effort at NIST is described by a wealth of documents [259–267] on the Web site
http://collaborate.nist.gov.

1.9 History notes
John McCarthy was a visionary in computer science; in the early 1960s he formulated the idea that
computation may be organized as a public utility, like water and electricity. In 1992 Gordon Bell was
invited to and delivered an address at a conference on parallel computations with the provocative title
Massively parallel computers: why not parallel computers for the masses? [45]; he argued that one-of-a-
kind systems are not only expensive to build, but the cost of rewriting applications for them is prohibitive.

Google Inc. was founded by Page and Brin, two graduate students in computer science at Stanford
University; in 1998 the company was incorporated in California after receiving a contribution of
$100, 000 from the co-founder and chief hardware designer of Sun Microsystems, Andy Bechtolsheim.

Amazon EC2 was initially released as a limited public beta cloud computing service on August 25,
2006. The system was developed by a team from Cape Town, South Africa. In October 2008 Microsoft
announced the Windows Azure platform; in June 2010 the platform became commercially available.
iCloud, a cloud storage and cloud computing service from Apple Inc., stores content such as music,
photos, calendars, and documents and allows users to access it from Apple devices. The system was
announced on June 6, 2011. In 2012 the Oracle Cloud was announced (see www.oracle.com/us/
corporate/features/oracle-cloud/index.html)

1.10 Exercises and problems
Problem 1. Mobile devices could benefit from cloud computing; explain the reasons you think that this

statement is true or provide arguments supporting the contrary. Discuss several cloud appli-
cations for mobile devices, then explain which one of the three cloud computing delivery
models, SaaS, PaaS, or IaaS, would be used by each one of the applications and why.

Problem 2. Do you believe that the homogeneity of large-scale distributed systems is an advantage?
Discuss the reasons for your answer. What aspects of hardware homogeneity are the most
relevant in your view, and why? What aspects of software homogeneity do you believe
are the most relevant, and why?

Problem 3. Peer-to-peer systems and clouds share a few goals but not the means to accomplish them.
Compare the two classes of systems in terms of architecture, resource management,
scope, and security.

Problem 4. Compare the three cloud computing delivery models, SaaS, PaaS, and IaaS, from the
point of view of application developers and users. Discuss the security and the reliability
of each model. Analyze the differences between PaaS and IaaS.

1.10 Exercises and Problems 19

Problem 5. Overprovisioning is the reliance on extra capacity to satisfy the needs of a large community
of users when the average-to-peak resource demand ratio is very high. Give an example
of a large-scale system using overprovisioning and discuss whether overprovisioning
is sustainable in that case and what its limitations are. Is cloud elasticity based on
overprovisioning sustainable? Give arguments to support your answer.

Problem 6. Discuss the possible solution for stabilizing cloud services mentioned in [126] inspired
by BGP (Border Gateway Protocol) routing [145,359].

Problem 7. An organization debating whether to install a private cloud or to use a public cloud (e.g.,
the AWS) for its computational and storage needs asks for your advice. What information
will you require to come to your recommendation, and how will you use each one of the
following items? (a) The description of the algorithms and the type of the applications
the organization will run; (b) the system software used by these applications; (c) the
resources needed by each application; (d) the size of the user population; and (e) the
relative experience of the user population; and (f) the costs involved.

Problem 8. A university is debating the question in Problem 7. What will be your advice, and why?
Should software licensing be an important element of the decision?

Problem 9. An IT company decides to provide free access to a public cloud dedicated to higher
education. Which one of the three cloud computing delivery models, SaaS, PaaS, or
IaaS, should it embrace, and why? What applications would be most beneficial for the
students? Will this solution have an impact on distance learning? Why or why not?

This page is intentionally left blank

2
CHAPTER

Parallel and Distributed Systems

Cloud computing is based on a large number of ideas and the experience accumulated since the first elec-
tronic computer was used to solve computationally challenging problems. In this chapter we overview
parallel and distributed systems concepts that are important to understanding the basic challenges in the
design and use of computer clouds.

Cloud computing is intimately tied to parallel and distributed computing. Cloud applications are
based on the client-server paradigm with relatively simple software, a thin client, running on the user’s
machine while the computations are carried out on the cloud. Many cloud applications are data-intensive
and use a number of instances that run concurrently. Transaction processing systems, such as Web-
based services, represent a large class of applications hosted by computing clouds; such applications
run multiple instances of the service and require reliable and in-order delivery of messages.

The concepts introduced in this section are very important in practice. Communication protocols
support coordination of distributed processes and transport information through noisy and unreliable
communication channels that may lose messages or deliver duplicate, distorted, or out-of-order mes-
sages. To ensure reliable and in-order delivery of messages, the protocols stamp each message with
a sequence number; in turn, a receiver sends an acknowledgment with its own sequence number to
confirm the receipt of a message. The clocks of a sender and a receiver may not be synchronized, so
these sequence numbers act as logical clocks. Timeouts are used to request the retransmission of lost
or delayed messages.

The concept of consistent cuts and distributed snapshots are at the heart of checkpoint-restart pro-
cedures for long-lasting computations. Indeed, many cloud computations are data-intensive and run for
extended periods of time on multiple computers in the cloud. Checkpoints are taken periodically in
anticipation of the need to restart a software process when one or more systems fail; when a failure
occurs, the computation is restarted from the last checkpoint rather than from the beginning.

Many functions of a computer cloud require information provided by monitors, system components
that collect state information from the individual systems. For example, controllers for cloud resource
management, discussed in Chapter 6, require accurate state information; security and reliability can
only be implemented using information provided by specialized monitors. Coordination of multiple
instances is a critical function of an application controller.

2.1 Parallel computing
As demonstrated by nature, the ability to work in parallel as a group represents a very efficient way
to reach a common target; human beings have learned to aggregate themselves and to assemble
man-made devices in organizations in which each entity may have modest ability, but a network of
Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00002-6
© 2013 Elsevier Inc. All rights reserved.

21

22 CHAPTER 2 Parallel and Distributed Systems

entities can organize themselves to accomplish goals that an individual entity cannot. Thus, we should
not be surprised that the thought that individual systems should work in concert to solve complex
applications was formulated early on in the computer age.

Parallel computing allows us to solve large problems by splitting them into smaller ones and solv-
ing them concurrently. Parallel computing was considered for many years the “holy grail” for solving
data-intensive problems encountered in many areas of science, engineering, and enterprise computing;
it required major advances in several areas, including algorithms, programming languages and envi-
ronments, performance monitoring, computer architecture, interconnection networks, and last but not
least, solid-state technologies.

Parallel hardware and software systems allow us to solve problems demanding more resources than
those provided by a single system and, at the same time, to reduce the time required to obtain a solution.
The speed-up measures the effectiveness of parallelization; in the general case the speed-up of the
parallel computation is defined as

S(N) = T (1)

T (N)
, (2.1)

with T (1) the execution time of the sequential computation and T (N) the execution time when N parallel
computations are carried out. Amdahl’s Law1 gives the potential speed-up of a parallel computation; it
states that the portion of the computation that cannot be parallelized determines the overall speed-up.
If α is the fraction of running time a sequential program spends on nonparallelizable segments of the
computation, then

S = 1

α
. (2.2)

To prove this result, call σ the sequential time and π the parallel time and start from the definitions
of T (1), T (N), and α:

T (1) = σ + π, T (N) = σ + π

N
, and α = σ

σ + π
. (2.3)

Then

S = T (1)

T (N)
= σ + π

σ + π/N
= 1 + π/σ

1 + (π/σ) × (1/N)
. (2.4)

But

π/σ = 1 − α

α
. (2.5)

Thus, for large N

S = 1 + (1 − α)/α

1 + (1 − α)/(Nα)
= 1

α + (1 − α)/N
≈ 1

α
. (2.6)

Amdahl’s law applies to a fixed problem size; in this case the amount of work assigned to each one of
the parallel processes decreases when the number of processes increases, and this affects the efficiency
of the parallel execution.

1Gene Amdahl is a theoretical physicist turned computer architect who contributed significantly to the development of
several IBM systems, including System/360, and then started his own company, Amdahl Corporation. His company produced
high-performance systems in the 1970s. Amdahl is best known for Amdahl’s Law, formulated in 1960.

2.1 Parallel Computing 23

When the problem size is allowed to change, Gustafson’s Law gives the scaled speed-up with N
parallel processes as

S(N) = N − α(N − 1). (2.7)

As before, we call σ the sequential time; now π is the fixed parallel time per process; α is given by
Equation 2.3. The sequential execution time, T (1), and the parallel execution time with N parallel
processes, T (N), are

T (1) = σ + Nπ and T (N) = σ + π. (2.8)

Then the scaled speed-up is

S(N) = T (1)

T (N)
= σ + Nπ

σ + π
= σ

σ + π
+ Nπ

σ + π
= α + N (1 − α) = N − α(N − 1). (2.9)

Amdahl’s Law expressed by Equation 2.2 and the scaled speed-up given by Equation 2.7 assume that
all processes are assigned the same amount of work. The scaled speed-up assumes that the amount
of work assigned to each process is the same, regardless of the problem size. Then, to maintain the
same execution time, the number of parallel processes must increase with the problem size. The scaled
speed-up captures the essence of efficiency, namely that the limitations of the sequential part of a code
can be balanced by increasing the problem size.

Coordination of concurrent computations could be quite challenging and involves overhead, which
ultimately reduces the speed-up of parallel computations. Often the parallel computation involves mul-
tiple stages, and all concurrent activities must finish one stage before starting the execution of the next
one; this barrier synchronization further reduces the speed-up.

The subtasks of a parallel program are called processes, whereas threads are lightweight subtasks.
Concurrent execution could be very challenging (e.g., it could lead to race conditions, an undesirable
effect in which the results of concurrent execution depend on the sequence of events). Often, shared
resources must be protected by locks to ensure serial access. Another potential problem for concurrent
execution of multiple processes or threads is the presence of deadlocks; a deadlock occurs when pro-
cesses or threads competing with one another for resources are forced to wait for additional resources
held by other processes or threads and none of the processes or threads can finish. The four Coffman
conditions must hold simultaneously for a deadlock to occur:

1. Mutual exclusion. At least one resource must be nonsharable, and only one process/thread may use
the resource at any given time.

2. Hold and wait. At least one process/thread must hold one or more resources and wait for others.
3. No preemption. The scheduler or a monitor should not be able to force a process/thread holding a

resource to relinquish it.
4. Circular wait. Given the set of n processes/threads {P1, P2, P3, . . . , Pn}, P1 should wait for a

resource held by P2, P2 should wait for a resource held by P3, and so on and Pn should wait
for a resource held by P1.

There are other potential problems related to concurrency. When two or more processes or threads
continually change their state in response to changes in the other processes, we have a livelock condition;
the result is that none of the processes can complete its execution. Very often processes/threads running
concurrently are assigned priorities and scheduled based on these priorities. Priority inversion occurs
when a higher-priority process or task is indirectly preempted by a lower-priority one.

24 CHAPTER 2 Parallel and Distributed Systems

Concurrent processes/tasks can communicate using messages or shared memory. Multicore proces-
sors sometimes use shared memory, but the shared memory is seldom used in modern supercomputers
because shared-memory systems are not scalable. Message passing is the communication method used
exclusively in large-scale distributed systems, and our discussion is restricted to this communication
paradigm.

Shared memory is extensively used by the system software; the stack is an example of shared memory
used to save the state of a process or thread. The kernel of an operating system uses control structures
such as processor and core tables for multiprocessor and multicore system management, process and
thread tables for process/thread management, page tables for virtual memory management, and so
on. Multiple application threads running on a multicore processor often communicate via the shared
memory of the system. Debugging a message-passing application is considerably easier than debugging
a shared memory application.

We distinguish fine-grain from coarse-grain parallelism; in the former case relatively small blocks
of the code can be executed in parallel without the need to communicate or synchronize with other
threads or processes, while in the latter case large blocks of code can be executed in parallel. The speed-
up of applications displaying fine-grain parallelism is considerably lower than that of coarse-grained
applications; indeed, the processor speed is orders of magnitude higher than the communication speed,
even on systems with a fast interconnect.

In many cases, discovering parallelism is quite challenging, and the development of parallel algo-
rithms requires a considerable effort. For example, many numerical analysis problems, such as solving
large systems of linear equations or solving systems of partial differential equations (PDEs), requires
algorithms based on domain decomposition methods.

Data parallelism is based on partitioning the data into several blocks and running multiple copies of
the same program concurrently, each running on a different data block – thus the name of the paradigm,
Same Program Multiple Data (SPMD).

Decomposition of a large problem into a set of smaller problems that can be solved concurrently is
sometimes trivial. For example, assume that we want to manipulate the display of a three-dimensional
object represented as a 3D lattice of (n × n × n) points; to rotate the image we would apply the
same transformation to each one of the n3 points. Such a transformation can be done by a geo-
metric engine, a hardware component that can carry out the transformation of a subset of n3 points
concurrently.

Suppose that we want to search for the occurrence of an object in a set of n images, or of a string
of characters in n records; such a search can be conducted in parallel. In all these instances the time
required to carry out the computational task using N processing elements is reduced by a factor of N .

A very appealing class of applications of cloud computing is numerical simulations of complex
systems that require an optimal design; in such instances multiple design alternatives must be compared
and optimal ones selected based on several optimization criteria. Consider for example the design of
a circuit using field programmable gate arrays (FPGAs). An FPGA is an integrated circuit designed
to be configured by the customer using a hardware description language (HDL), similar to that used
for an application-specific integrated circuit (ASIC). Because multiple choices for the placement of
components and for interconnecting them exist, the designer could run concurrently N versions of the
design choices and choose the one with the best performance, such as minimum power consumption.
Alternative optimization objectives could be to reduce cross-talk among the wires or to minimize the

2.2 Parallel Computer Architecture 25

overall noise. Each alternative configuration requires hours or maybe days of computing; hence, running
them concurrently reduces the design time considerably.

The list of companies that aimed to support parallel computing and ended up as casualties of this
effort is long and includes names such as Ardent, Convex, Encore, Floating Point Systems, Inmos,
Kendall Square Research, MasPar, nCube, Sequent, Tandem, and Thinking Machines. The difficulties
of developing new programming models and the effort to design programming environments for parallel
applications added to the challenges faced by all these companies.

From the very beginning it was clear that parallel computing requires specialized hardware and system
software. It was also clear that the interconnection fabric was critical for the performance of parallel
computing systems. We now take a closer look at parallelism at different levels and the means to exploit it.

2.2 Parallel computer architecture
Our discussion of parallel computer architectures starts with the recognition that parallelism at different
levels can be exploited. These levels are:

• Bit-level parallelism. The number of bits processed per clock cycle, often called a word size, has
increased gradually from 4-bit processors to 8-bit, 16-bit, 32-bit, and, since 2004, 64-bit. This has
reduced the number of instructions required to process larger operands and allowed a significant
performance improvement. During this evolutionary process the number of address bits has also
increased, allowing instructions to reference a larger address space.

• Instruction-level parallelism. Today’s computers use multi-stage processing pipelines to speed
up execution. Once an n-stage pipeline is full, an instruction is completed at every clock cycle.
A “classic” pipeline of a Reduced Instruction Set Computing (RISC) architecture consists of five
stages2: instruction fetch, instruction decode, instruction execution, memory access, and write
back. A Complex Instruction Set Computing (CISC) architecture could have a much large number
of pipelines stages; for example, an Intel Pentium 4 processor has a 35-stage pipeline.

• Data parallelism or loop parallelism. The program loops can be processed in parallel.
• Task parallelism. The problem can be decomposed into tasks that can be carried out concurrently.

A widely used type of task parallelism is the Same Program Multiple Data (SPMD) paradigm. As
the name suggests, individual processors run the same program but on different segments of the
input data. Data dependencies cause different flows of control in individual tasks.

In 1966 Michael Flynn proposed a classification of computer architectures based on the number
of concurrent control/instruction and data streams: Single Instruction, Single Data (SISD), Single
Instruction, Multiple Data (SIMD), and (Multiple Instructions, Multiple Data (MIMD).3

The SIMD architecture supports vector processing. When an SIMD instruction is issued, the oper-
ations on individual vector components are carried out concurrently. For example, to add two vectors

2The number of pipeline stages in different RISC processors varies. For example, ARM7 and earlier implementations of
ARM processors have a three-stage pipeline: fetch, decode, and execute. Higher performance designs, such as the ARM9,
have deeper pipelines: Cortex-A8 has 13 stages.
3Another category, Multiple Instructions Single Data (MISD), is a fourth possible architecture, but it is very rarely used,
mostly for fault tolerance.

26 CHAPTER 2 Parallel and Distributed Systems

(a1, a2, . . . , a50) and (b1, b2, . . . , b50), all 50 pairs of vector elements are added concurrently and all
the sums (ai + bi), 1 � i � 50 are available at the same time.

The first use of SIMD instructions was in vector supercomputers such as the CDC Star-100 and the
Texas Instruments ASC in the early 1970s. Vector processing was especially popularized by Cray in
the 1970s and 1980s by attached vector processors such as those produced by the FPS (Floating Point
Systems), and by supercomputers such as the Thinking Machines CM-1 and CM-2. Sun Microsystems
introduced SIMD integer instructions in its VIS instruction set extensions in 1995 in its UltraSPARC
I microprocessor; the first widely deployed SIMD for gaming was Intel’s MMX extensions to the x86
architecture. IBM and Motorola then added AltiVec to the POWER architecture, and there have been
several extensions to the SIMD instruction sets for both architectures.

The desire to support real-time graphics with vectors of two, three, or four dimensions led to the
development of graphic processing units (GPUs). GPUs are very efficient at manipulating computer
graphics, and their highly parallel structures based on SIMD execution support parallel processing of
large blocks of data. GPUs produced by Intel, Nvidia, and AMD/ATI are used in embedded systems,
mobile phones, personal computers, workstations, and game consoles.

An MIMD architecture refers to a system with several processors that function asynchronously and
independently; at any time, different processors may be executing different instructions on different
data. The processors can share a common memory of an MIMD, and we distinguish several types of
systems: Uniform Memory Access (UMA), Cache Only Memory Access (COMA), and Non-Uniform
Memory Access (NUMA).

An MIMD system could have a distributed memory; in this case the processors and the memory
communicate with one another using an interconnection network, such as a hypercube, a 2D torus,
a 3D torus, an omega network, or another network topology. Today most supercomputers are MIMD
machines, and some use GPUs instead of traditional processors. Multicore processors with multiple
processing units are now ubiquitous.

Modern supercomputers derive their power from architecture and parallelism rather than the increase
of processor speed. The supercomputers of today consist of a very large number of processors and cores
communicating via very fast custom interconnects. In mid-2012 the most powerful supercomputer was
a Linux-based IBM Sequoia-BlueGene/Q system powered by Power BQC 16-core processors running at
1.6 GHz. The system, installed at Lawrence Livermore National Laboratory and called Jaguar, has a total
of 1,572,864 cores and 1,572,864 GB of memory, achieves a sustainable speed of 16.32 petaFLOPS,
and consumes 7.89 MW of power.

More recently, a Cray XK7 system called Titan, installed at the Oak Ridge National Laboratory
(ORNL) in Tennessee, was coronated as the fastest supercomputer in the world. Titan has 560,640
processors, including 261,632 Nvidia K20x accelerator cores; it achieved a speed of 17.59 petaFLOPS
on the Linpack benchmark. Several most powerful systems listed in the “Top 500 supercomputers” (see
www.top500.org) are powered by the Nvidia 2050 GPU; three of the top 10 use an InfiniBand 4

interconnect.
The next natural step was triggered by advances in communication networks when low-latency and

high-bandwidth wide area networks (WANs) allowed individual systems, many of them multiprocessors,

4InfiniBand is a switched fabric communications link used in high-performance computing and in datacenters.

2.3 Distributed Systems 27

to be geographically separated. Large-scale distributed systems were first used for scientific and engi-
neering applications and took advantage of the advancements in system software, programming models,
tools, and algorithms developed for parallel processing.

2.3 Distributed systems
A distributed system is a collection of autonomous computers that are connected through a network and
distribution software called middleware, which enables computers to coordinate their activities and to
share the resources of the system. A distributed system’s users perceive the system as a single integrated
computing facility.

A distributed system has several characteristics: Its components are autonomous, scheduling and
other resource management and security policies are implemented by each system, there are multiple
points of control and multiple points of failure, and the resources may not be accessible at all times.
Distributed systems can be scaled by adding additional resources and can be designed to maintain
availability even at low levels of hardware/software/network reliability.

Distributed systems have been around for several decades. For example, distributed file systems and
network file systems have been used for user convenience and to improve reliability and functionality of
file systems for many years. Modern operating systems allow a user to mount a remote file system and
access it the same way a local file system is accessed, yet with a performance penalty due to larger com-
munication costs. The remote procedure call (RPC) supports inter-process communication and allows a
procedure on a system to invoke a procedure running in a different address space, possibly on a remote
system. RPCs were introduced in the early 1970s by Bruce Nelson and used for the first time at Xerox;
the Network File System (NFS) introduced in 1984 was based on Sun’s RPC. Many programming lan-
guages support RPCs; for example, Java Remote Method Invocation (Java RMI) provides a functionality
similar to that of UNIX RPC methods, and XML-RPC uses XML to encode HTML-based calls.

The middleware should support a set of desirable properties of a distributed system:

• Access transparency. Local and remote information objects are accessed using identical operations.
• Location transparency. Information objects are accessed without knowledge of their location.
• Concurrency transparency. Several processes run concurrently using shared information objects

without interference among them.
• Replication transparency. Multiple instances of information objects are used to increase reliability

without the knowledge of users or applications.
• Failure transparency. The concealment of faults.
• Migration transparency. The information objects in the system are moved without affecting the

operation performed on them.
• Performance transparency. The system can be reconfigured based on the load and quality of service

requirements.
• Scaling transparency. The system and the applications can scale without a change in the system

structure and without affecting the applications.

28 CHAPTER 2 Parallel and Distributed Systems

2.4 Global state of a process group
To understand the important properties of distributed systems, we use a model, an abstraction based on
two critical components: processes and communication channels. A process is a program in execution,
and a thread is a lightweight process. A thread of execution is the smallest unit of processing that can
be scheduled by an operating system.

A process is characterized by its state; the state is the ensemble of information we need to restart
a process after it was suspended. An event is a change of state of a process. The events affecting the
state of process p1 are numbered sequentially as e1

i , e2
i , e3

i , . . ., as shown in the space-time diagram in

Figure 2.1(a). A process p1 is in state σ
j

i immediately after the occurrence of event e j
i and remains in

that state until the occurrence of the next event, e j+1
i .

(a)

(b)

(c)

e1

1
e 2

1
e3

1
e 4

1
e5

1

e1

1 e 2

1 e3

1 e 4

1
e11

1

e 6

1

e1
2 e2

2 e
3
2 e

4
2 e

5
2

e1
2 e 2

2 e3
2

e 4
2

e 1
1 e 2

1
e 3

1 e 4
1 e 5

1

e1
3 e 2

3
e3

3 e 4
3

p
2

p
3

p
1

p
1

p
1

p
2

FIGURE 2.1

Space-time diagrams display local and communication events during a process lifetime. Local events are
small black circles. Communication events in different processes are connected by lines originating at a
send event and terminated by an arrow at the receive event. (a) All events in the case of a single process p1

are local; the process is in state σ1 immediately after the occurrence of event e1
1 and remains in that state

until the occurrence of event e2
1. (b) Two processes p1 and p2; event e2

1 is a communication event, p1 sends
a message to p2; event e3

2 is a communication event, process p2 receives the message sent by p1. (c) Three
processes interact by means of communication events.

2.4 Global State of a Process Group 29

A process group is a collection of cooperating processes; these processes work in concert and
communicate with one another to reach a common goal. For example, a parallel algorithm to solve
a system of partial differential equations (PDEs) over a domain D may partition the data in several
segments and assign each segment to one of the members of the process group. The processes in the
group must cooperate with one another and iterate until the common boundary values computed by one
process agree with the common boundary values computed by another.

A communication channel provides the means for processes or threads to communicate with one
another and coordinate their actions by exchanging messages. Without loss of generality, we assume that
communication among processes is done only by means of send (m) and receive (m) communication
events, where m is a message. We use the term message for a structured unit of information, which can
be interpreted only in a semantic context by the sender and the receiver. The state of a communication
channel is defined as follows: Given two processes pi and p j , the state of the channel, ξi, j , from pi to
p j consists of messages sent by pi but not yet received by p j .

These two abstractions allow us to concentrate on critical properties of distributed systems without
the need to discuss the detailed physical properties of the entities involved. The model presented is based
on the assumption that a channel is a unidirectional bit pipe of infinite bandwidth and zero latency, but
unreliable; messages sent through a channel may be lost or distorted or the channel may fail, losing its
ability to deliver messages. We also assume that the time a process needs to traverse a set of states is of
no concern and that processes may fail or be aborted.

A protocol is a finite set of messages exchanged among processes to help them coordinate their
actions. Figure 2.1(c) illustrates the case when communication events are dominant in the local history
of processes, p1, p2, and p3. In this case only e5

1 is a local event; all others are communication events.
The particular protocol illustrated in Figure 2.1(c) requires processes p2 and p3 to send messages to
the other processes in response to a message from process p1.

The informal definition of the state of a single process can be extended to collections of communicat-
ing processes. The global state of a distributed system consisting of several processes and communication
channels is the union of the states of the individual processes and channels [34].

Call h j
i the history of process pi up to and including its j-th event, e j

i , and call σ
j

i the local state

of process pi following event e j
i . Consider a system consisting of n processes, p1, p2, . . . , pi , . . . , pn

with σ
ji

i the local state of process pi ; then the global state of the system is an n-tuple of local states

�(j1, j2,..., jn) =
(
σ

j1
1 , σ

j2
2 , . . . , σ

ji
i , . . . , σ

jn
n

)
. (2.10)

The state of the channels does not appear explicitly in this definition of the global state because the
state of the channels is encoded as part of the local state of the processes communicating through the
channels.

The global states of a distributed computation with n processes form an n-dimensional lattice. The

elements of this lattice are global states �(j1, j2,..., jn)
(
σ

j1
1 , σ

j2
2 , . . . , σ

jn
n

)
.

Figure 2.2(a) shows the lattice of global states of the distributed computation in Figure 2.2(b) This
is a two-dimensional lattice because we have two processes, p1 and p2. The lattice of global states for
the distributed computation in Figure 2.1(c) is a three-dimensional lattice, and the computation consists
of three concurrent processes, p1, p2, and p3.

30 CHAPTER 2 Parallel and Distributed Systems

Σ0,0

Σ 0,1Σ1,0

Σ1,1Σ 0,2

Σ0,3

Σ
2,0

Σ1,2 Σ2,1

Σ1,3 Σ2,2

Σ1,4 Σ2,3 Σ3,2

Σ1,5
Σ2,4 Σ3,3 Σ4,2

Σ2,5 Σ3,4 Σ4,3 Σ5,2

Σ5,3 Σ4,4 Σ5,3

Σ4,5 Σ5,4

Σ5,5

Σ5,6

e1
1 e2

1

p1

p2

e1
2 e2

2

e1
1 e2

1

p1

p2

e1
2 e2

2

e1
1 e2

1

p1

p2
e1

2 e2
2

e1
1 e2

1

p1

p2
e1

2 e2
2

e1
1e

2
1

p1

p2
e1

2 e2
2

e1
1 e2

1

p1

p2
e1

2 e2
2

(b)(a)

time

FIGURE 2.2

(a) The lattice of the global states of two processes with the space-time diagrams in Figure 2.2(b). Only the
first two events for each thread are shown in Figure 2.2(b). (b) The six possible sequences of events leading
to the state �(2,2).

The initial state of the system in Figure 2.2(b) is the state before the occurrence of any event and it is
denoted by �(0,0); the only global states reachable from �(0,0) are �(1,0) and �(0,1). The communication
events limit the global states the system may reach; in this example the system cannot reach the state
�(4,0) because process p1 enters state σ4 only after process p2 has entered the state σ1. Figure 2.2(b)
shows the six possible sequences of events to reach the global state �(2,2):

(
e1

1, e2
1, e1

2, e2
2

)
,
(

e1
1, e1

2, e2
1, e2

2

)
,
(

e1
1, e1

2, e2
2, e2

1

)
,
(

e1
2, e2

2, e1
1, e2

1

)
,
(

e1
2, e1

1, e2
1, e2

2

)
,
(

e1
2, e1

1, e2
2, e2

1

)
.

(2.11)
An interesting question is how many paths does it take to reach a global state. The more paths exist,

the harder it is to identify the events leading to a state when we observe an undesirable behavior of the
system. A large number of paths increases the difficulty of debugging the system.

We conjecture that in the case of two threads in Figure 2.2(b) the number of paths from the global
state �(0,0) to �(m,n) is

N (m,n)
p = (m + n)!

m!n! . (2.12)

2.4 Global State of a Process Group 31

We have already seen that there are six paths leading to state �(2,2); indeed,

N (2,2)
p = (2 + 2)!

2!2! = 24

4
= 6. (2.13)

To prove Equation 2.12 we use a method resembling induction; we notice first that the global state
�(1,1) can only be reached from the states �(1,0) and �(0,1) and that N (1,1)

p = (2)!/1!1! = 2. Thus, the
formula is true for m = n = 1. Then we show that if the formula is true for the (m − 1, n − 1) case it
will also be true for the (m, n) case. If our conjecture is true, then

N [(m−1),n]
p = [(m − 1) + n]!

(m − 1)!n! . (2.14)

and

N [m,(n−1)]
p = [m + (n − 1)]!

m!(n − 1)! . (2.15)

We observe that the global state �(m,n), ∀(m, n) � 1 can only be reached from two states, �(m−1,n)

and �(m,n−1) (see Figure 2.3), thus:

N (m,n)
p = N (m−1,n)

p + N (m,n−1)
p . (2.16)

It is easy to see that indeed,

[(m − 1) + n]!
(m − 1)!n! + [m + (n − 1)]!

m!(n − 1)! = (m + n − 1)!
[

1

(m − 1)!n! + 1

m!(n − 1)!
]

= (m + n)!
m!n! .

(2.17)

This shows that our conjecture is true; thus, Equation 2.12 gives the number of paths to reach the global
state �(m,n) from �(0,0) when two threads are involved. This expression can be generalized for the case
of q threads; using the same strategy, it is easy to see that the number of path from the state �(0,0,...,0)

to the global state �(n1,n2,...,nq) is

N
(n1,n2,...,nq)
p = (n1 + n2 + · · · + nq)!

n1!n2! . . . nq ! . (2.18)

(m,n)

(m-1,n) (m,n-1)

FIGURE 2.3

In the two-dimensional case, the global state �(m,n), ∀(m, n) � 1 can only be reached from two states,
�(m−1,n) and �(m,n−1).

32 CHAPTER 2 Parallel and Distributed Systems

Indeed, it is easy to see that

N
(n1,n2,...,nq)
p = N

(n1−1,n2,...,nq)
p + N

(n1,n2−1,...,nq)
p + · · · + N

(n1,n2,...,nq−1)
p . (2.19)

Equation 2.18 gives us an indication of how difficult it is to debug a system with a large number of
concurrent threads.

Many problems in distributed systems are instances of the global predicate evaluation problem
(GPE), where the goal is to evaluate a Boolean expression whose elements are functions of the global
state of the system.

2.5 Communication protocols and process coordination
A major concern in any parallel and distributed system is communication in the presence of channel
failures. There are multiple modes for a channel to fail, and some lead to messages being lost. In the
general case, it is impossible to guarantee that two processes will reach an agreement in case of channel
failures (see Figure 2.4.)

Given two processes p1 and p2 connected by a communication channel that can lose a message with
probability ε > 0, no protocol capable of guaranteeing that two processes will reach agreement exists,
regardless of how small the probability ε is.

The proof of this statement is by contradiction. Assume that such a protocol exists and it consists of
n messages; recall that a protocol is a finite sequence of messages. Since any message might be lost with
probability ε, the protocol should be able to function when only n − 1 messages reach their destination,
the last one being lost. Induction on the number of messages proves that indeed no such protocol exists;
indeed, the same reasoning leads us to conclude that the protocol should function correctly with (n −2)

messages, and so on.
In practice, error detection and error correction allow processes to communicate reliably though

noisy digital channels. The redundancy of a message is increased by more bits and packaging a message
as a code word; the recipient of the message is then able to decide if the sequence of bits received is a
valid code word and, if the code satisfies some distance properties, then the recipient of the message is
able to extract the original message from a bit string in error.

Process p1 Process p2

12

n-1
n

FIGURE 2.4

Process coordination in the presence of errors; each message may be lost with probability ε. If a protocol
consisting of n messages exists, then the protocol should be able to function properly with n − 1 messages
reaching their destination, one of them being lost.

2.5 Communication Protocols and Process Coordination 33

Communication protocols implement not only error control mechanisms, but also flow control and
congestion control. Flow control provides feedback from the receiver; it forces the sender to transmit
only the amount of data the receiver is able to buffer and then process. Congestion control ensures that
the offered load of the network does not exceed the network capacity. In store-and-forward networks,
individual routers may drop packets when the network is congested and the sender is forced to retransmit.
Based on the estimation of the round-trip-time (RTT), the sender can detect congestion and reduce the
transmission rate.

The implementation of these mechanisms requires the measurement of time intervals, the time elapsed
between two events; we also need a global concept of time shared by all entities that cooperate with one
another. For example, a computer chip has an internal clock, and a predefined set of actions occurs at
each clock tick. Each chip has an interval timer that helps enhance the system’s fault tolerance; when
the effects of an action are not sensed after a predefined interval, the action is repeated.

When the entities communicating with each other are networked computers, the precision of the
clock synchronization is critical [205]. The event rates are very high and each system goes through
state changes at a very fast pace; modern processors run at a 2–4 GHz clock rate. That explains why we
need to measure time very accurately; indeed, we have atomic clocks with an accuracy of about 10−6

seconds per year.
An isolated system can be characterized by its history, expressed as a sequence of events, each event

corresponding to a change of the state of the system. Local timers provide relative time measurements. A
more accurate description adds to the system’s history the time of occurrence of each event as measured
by the local timer.

Messages sent by processes may be lost or distorted during transmission. Without additional restric-
tions regarding message delays and errors, there are no means to ensure a perfect synchronization of
local clocks and there are no obvious methods to ensure a global ordering of events occurring in dif-
ferent processes. Determining the global state of a large-scale distributed system is a very challenging
problem.

The mechanisms described here are insufficient once we approach the problem of cooperating entities.
To coordinate their actions, two entities need a common perception of time. Timers are not enough.
Clocks provide the only way to measure distributed duration, that is, actions that start in one process
and terminate in another. Global agreement on time is necessary to trigger actions that should occur
concurrently (e.g., in a real-time control system of a power plant, several circuits must be switched
on at the same time). Agreement on the time when events occur is necessary for distributed recording
of events – for example, to determine a precedence relation through a temporal ordering of events.
To ensure that a system functions correctly, we need to determine that the event causing a change of
state occurred before the state change – for instance, the sensor triggering an alarm has to change its
value before the emergency procedure to handle the event is activated. Another example of the need for
agreement on the time of occurrence of events is in replicated actions. In this case several replicas of a
process must log the time of an event in a consistent manner.

Time stamps are often used for event ordering using a global time base constructed on local virtual
clocks [235]. The �-protocols [94] achieve total temporal order using a global time base. Assume that
local virtual clock readings do not differ by more than π , called precision of the global time base. Call
g the granularity of physical clocks. First, observe that the granularity should not be smaller than the
precision; given two events a and b occurring in different processes, if tb − ta � π + g we cannot tell

34 CHAPTER 2 Parallel and Distributed Systems

which one occurred first [361]. Based on these observations, it follows that the order discrimination of
clock-driven protocols cannot be better than twice the clock granularity.

System specification, design, and analysis require a clear understanding of cause-effect relationships.
During the system specification phase we view the system as a state machine and define the actions that
cause transitions from one state to another. During the system analysis phase we need to determine the
cause that brought the system to a certain state.

The activity of any process is modeled as a sequence of events; hence, the binary relation cause-effect
relationship should be expressed in terms of events and should express our intuition that the cause must
precede the effects. Again, we need to distinguish between local events and communication events.
The latter events affect more than one process and are essential for constructing a global history of an
ensemble of processes. Let hi denote the local history of process pi and let ek

i denote the k-th event in
this history.

The binary cause-effect relationship between two events has the following properties:

1. Causality of local events can be derived from the process history:

if ek
i , el

i ∈ hi and k < l then ek
i → el

i . (2.20)

2. Causality of communication events:

if ek
i = send(m) and el

j = receive(m) then ek
i → el

j . (2.21)

3. Transitivity of the causal relationship:

if ek
i → el

j and el
j → en

m then ek
i → en

m . (2.22)

Two events in the global history may be unrelated. If so, neither one is the cause of the other; such
events are said to be concurrent events.

2.6 Logical clocks
A logical clock (LC) is an abstraction necessary to ensure the clock condition in the absence of a global
clock. Each process pi maps events to positive integers. Call LC(e) the local variable associated with
event e. Each process time stamps each message m sent with the value of the logical clock at the time of
sending, T S(m) = LC(send(m)). The rules to update the logical clock are specified by the following
relationship:

LC(e) =
{

LC + 1 if e is a local event or a send(m) event
max (LC, T S(m) + 1) if e = receive(m).

(2.23)

The concept of logical clocks is illustrated in Figure 2.5 using a modified space-time diagram in
which the events are labeled with the logical clock value. Messages exchanged between processes are
shown as lines from the sender to the receiver; the communication events corresponding to sending and
receiving messages are marked on these diagrams.

Each process labels local events and sends events sequentially until it receives a message marked
with a logical clock value larger than the next local logical clock value, as shown in Equation 2.23.

2.7 Message Delivery Rules; Causal Delivery 35

m2m1

m3

p
1

p2

p3

m4

m5

1

1

1

2

2

2

3

3

4 5

6 7 8 9

10 11

12

FIGURE 2.5

Three processes and their logical clocks. The usual labeling of events as e1
1 , e2

1 , e3
1 , . . . is omitted to avoid

overloading the figure; only the logical clock values for the local and communication events are marked. The
correspondence between the events and the logical clock values is obvious: e1

1 , e1
2 , e1

3 → 1, e5
1 → 5, e4

2 → 7,

e4
3 → 10, e6

1 → 12, and so on. Global ordering of all events is not possible; there is no way to establish the
ordering of events e1

1 , e1
2 and e1

3.

It follows that logical clocks do not allow a global ordering of all events. For example, there is no way to
establish the ordering of events e1

1, e1
2, and e1

3 in Figure 2.5. Nevertheless, communication events allow
different processes to coordinate their logical clocks; for example, process p2 labels the event e3

2 as 6
because of message m2, which carries the information about the logical clock value as 5 at the time
message m2 was sent. Recall that e j

i is the j-th event in process pi .
Logical clocks lack an important property, gap detection; given two events e and e′ and their logical

clock values, LC(e) and LC(e′), it is impossible to establish if an event e′′ exists such that

LC(e) < LC(e′′) < LC(e′). (2.24)

For example, for process p1 there is an event, e4
1, between the events e3

1 and e5
1 in Figure 2.5; indeed,

LC(e3
1) = 3, LC(e5

1) = 5, LC(e4
1) = 4, and LC(e3

1) < LC(e4
1) < LC(e5

1). However, for process
p3, the events e3

3 and e4
3 are consecutive, though LC(e3

3) = 3 and LC(e4
3) = 10.

2.7 Message delivery rules; causal delivery
The communication channel abstraction makes no assumptions about the order of messages; a real-
life network might reorder messages. This fact has profound implications for a distributed application.
Consider for example a robot getting instructions to navigate from a monitoring facility with two
messages, “turn left” and “turn right,” being delivered out of order.

Message receiving and message delivery are two distinct operations; a delivery rule is an additional
assumption about the channel-process interface. This rule establishes when a message received is actu-
ally delivered to the destination process. The receiving of a message m and its delivery are two distinct

36 CHAPTER 2 Parallel and Distributed Systems

Process

Channel/
Process
Interface

Channel/
Process
Interface

p
i

Process
pj

Channel

receive

deliver

FIGURE 2.6

Message receiving and message delivery are two distinct operations. The channel-process interface imple-
ments the delivery rules (e.g., FIFO delivery).

events in a causal relation with one another. A message can only be delivered after being received (see
Figure 2.6)

receive(m) → deliver(m). (2.25)

First In, First Out (FIFO) delivery implies that messages are delivered in the same order in which
they are sent. For each pair of source-destination processes (pi , p j), FIFO delivery requires that the
following relation should be satisfied:

sendi (m) → sendi (m
′) ⇒ deliver j (m) → deliver j (m

′). (2.26)

Even if the communication channel does not guarantee FIFO delivery, FIFO delivery can be enforced
by attaching a sequence number to each message sent. The sequence numbers are also used to reassemble
messages out of individual packets.

Causal delivery is an extension of the FIFO delivery to the case when a process receives messages
from different sources. Assume a group of three processes, (pi , p j , pk) and two messages m and m′.
Causal delivery requires that

sendi (m) → send j (m
′) ⇒ deliverk(m) → deliverk(m

′). (2.27)

When more than two processes are involved in a message exchange, the message delivery may be
FIFO but not causal, as shown in Figure 2.7 where we see that

• deliver(m3) → deliver(m1), according to the local history of process p2.
• deliver(m2) → send(m3), according to the local history of process p1.
• send(m1) → send(m2), according to the local history of process p3.

2.7 Message Delivery Rules; Causal Delivery 37

m2

m1

m3

p1

p2

p3

FIGURE 2.7

Violation of causal delivery when more than two processes are involved. Message m1 is delivered to process
p2 after message m3, though message m1 was sent before m3. Indeed, message m3 was sent by process p1

after receiving m2, which in turn was sent by process p3 after sending message m1.

• send(m2) → deliver(m2).
• send(m3) → deliver(m3).

The preceding transitivity property and the causality relations imply that send(m1) → deliver(m3).
Call T S(m) the time stamp carried by message m. A message received by process pi is stable if no

future messages with a time stamp smaller than T S(m) can be received by process pi . When logical
clocks are used, a process pi can construct consistent observations of the system if it implements the
following delivery rule: Deliver all stable messages in increasing time-stamp order.

Let’s now examine the problem of consistent message delivery under several sets of assumptions.
First, assume that processes cooperating with each other in a distributed environment have access to a
global real-time clock, that the message delays are bounded by δ, and that there is no clock drift. Call
RC(e) the time of occurrence of event e. A process includes RC(e) in every message it sends, where e
is the send-message event. The delivery rule in this case is: At time t deliver all received messages with
time stamps up to (t −δ) in increasing time-stamp order. Indeed, this delivery rule guarantees that under
the bounded delay assumption the message delivery is consistent. All messages delivered at time t are
in order and no future message with a time stamp lower than any of the messages delivered may arrive.

For any two events, e and e′, occurring in different processes, the so-called clock condition is satis-
fied if

e → e′ ⇒ RC(e) < RC(e′), ∀e, e′. (2.28)

Often, we are interested in determining the set of events that caused an event knowing the time
stamps associated with all events; in other words, we are interested in deducing the causal precedence
relation between events from their time stamps. To do so we need to define the so-called strong clock
condition. The strong clock condition requires an equivalence between the causal precedence and the
ordering of the time stamps

∀e, e′, e → e′ ≡ T S(e) < T S(e′). (2.29)

Causal delivery is very important because it allows processes to reason about the entire system using
only local information. This is only true in a closed system where all communication channels are

38 CHAPTER 2 Parallel and Distributed Systems

known; sometimes the system has hidden channels, and reasoning based on causal analysis may lead
to incorrect conclusions.

2.8 Runs and cuts; causal history
Knowledge of the state of several, and possibly all, processes in a distributed system is often needed.
For example, a supervisory process must be able to detect when a subset of processes is deadlocked; a
process might migrate from one location to another or be replicated only after an agreement with others.
In all these examples a process needs to evaluate a predicate function of the global state of the system.

We call the process responsible for constructing the global state of the system the monitor. A monitor
sends messages requesting information about the local state of every process and gathers the replies to
construct the global state. Intuitively, the construction of the global state is equivalent to taking snapshots
of individual processes and then combining these snapshots into a global view. Yet, combining snapshots
is straightforward if and only if all processes have access to a global clock and the snapshots are taken
at the same time; hence, the snapshots are consistent with one another.

A run is a total ordering R of all the events in the global history of a distributed computation consistent
with the local history of each participant process; a run

R =
(

e j1
1 , e j2

2 , . . . , e jn
n

)
(2.30)

implies a sequence of events as well as a sequence of global states.
For example, consider the three processes in Figure 2.8. We can construct a three-dimensional lattice

of global states following a procedure similar to the one in Figure 2.2, starting from the initial state
�(000) and proceeding to any reachable state �(i jk) with i, j, k the events in processes p1, p2, p3,
respectively. The run R1 = (

e1
1, e1

2, e1
3, e2

1

)
is consistent with both the local history of each process and

m 1 m 2

m 3 m 4

m 5
C1 C2

e5
1e1

1 e 2
1 e3

1 e 4
1 e 6

1

e 6

2e1
2 e2

2 e
3
2 e

4
2 e

5
2

e1
3 e 2

3
e3

3 e 4
3

e 5
3

p
2

p
3

p
1

FIGURE 2.8

Inconsistent and consistent cuts. The cut C1 = (e4
1 , e5

2 , e2
3) is inconsistent because it includes e4

2, the
event triggered by the arrival of the message m3 at process p2, but does not include e3

3, the event triggered
by process p3 sending m3. Thus, the cut C1 violates causality. On the other hand, C2 = (e5

1 , e6
2 , e3

3) is a
consistent cut; there is no causal inconsistency because, it includes event e6

2, the sending of message m4,
without the effect of it, the event e4

3 receiving the message by process p3.

2.8 Runs and Cuts; Causal History 39

the global history; this run is valid, and the system has traversed the global states

�000, �100, �110, �111, �211. (2.31)

On the other hand, the run R2 = (e1
1, e2

1, e1
3, e3

1, e2
3) is invalid because it is inconsistent with the global

history. The system cannot ever reach the state �301; message m1 must be sent before it is received, so
event e1

2 must occur in any run before event e3
1.

A cut is a subset of the local history of all processes. If h j
i denotes the history of process pi up to

and including its j-th event, e j
i , then a cut C is an n-tuple

C = {h j
i } with i ∈ {1, n} and j ∈ {1, ni }. (2.32)

The frontier of the cut is an n-tuple consisting of the last event of every process included in the cut.
Figure 2.8 illustrates a space-time diagram for a group of three processes, p1, p2, p3, and it shows two
cuts, C1 and C2. C1 has the frontier (4, 5, 2), frozen after the fourth event of process p1, the fifth event
of process p2, and the second event of process p3, and C2 has the frontier (5, 6, 3).

Cuts provide the necessary intuition to generate global states based on an exchange of messages
between a monitor and a group of processes. The cut represents the instance when requests to report
individual states are received by the members of the group. Clearly not all cuts are meaningful. For
example, the cut C1 with the frontier (4, 5, 2) in Figure 2.8 violates our intuition regarding causality; it
includes e4

2, the event triggered by the arrival of message m3 at process p2 but does not include e3
3, the

event triggered by process p3 sending m3. In this snapshot p3 was frozen after its second event, e2
3, before

it had the chance to send message m3. Causality is violated and the system cannot ever reach such a state.
Next we introduce the concepts of consistent and inconsistent cuts and runs. A cut closed under the

causal precedence relationship is called a consistent cut. C is a consistent cut if and only if for all events

∀e, e′, (e ∈ C) ∧ (e′ → e) ⇒ e′ ∈ C . (2.33)

A consistent cut establishes an “instance” of a distributed computation. Given a consistent cut we
can determine if an event e occurred before the cut.

A run R is said to be consistent if the total ordering of events imposed by the run is consistent with the
partial order imposed by the causal relation; for all events, e → e′ implies that e appears before e′ in R.

Consider a distributed computation consisting of a group of communicating processes
G = {p1, p2, . . . , pn}. The causal history of event e, γ (e), is the smallest consistent cut of G including
event e

γ (e) = {e′ ∈ G|e′ → e} ∪ {e}. (2.34)

The causal history of event e5
2 in Figure 2.9 is:

γ
(

e5
2

)
=
{

e1
1, e2

1, e3
1, e4

1, e5
1, e1

2, e2
2, e3

2, e4
2, e5

2, e1
3, e2

3, e3
3

}
. (2.35)

This is the smallest consistent cut including e5
2; indeed, if we omit e3

3, then the cut (5, 5, 2) would be
inconsistent; it would include e4

2, the communication event for receiving m3, but not e3
3, the sending of

m3. If we omit e5
1, the cut (4, 5, 3) would also be inconsistent and it would include e3

2 but not e5
1.

40 CHAPTER 2 Parallel and Distributed Systems

m 1 m 2

m 3 m 4

m 5

e5
1e1

1 e 2
1 e3

1 e 4
1

e 6

1

e 6

2e1
2 e2

2 e
3
2 e

4
2 e

5
2

e1
3 e 2

3 e3
3 e 4

3
e 5

3

p
2

p
3

p
1

FIGURE 2.9

The causal history of event e5
2 , γ (e5

2) =
{
e1

1 , e2
1 , e3

1 , e4
1 , e5

1 , e1
2 , e2

2 , e3
2 , e4

2 , e5
2 , e1

3 , e2
3 , e3

3

}
is the smallest

consistent cut including e5
2.

Causal histories can be used as clock values and satisfy the strong clock condition, provided that we
equate clock comparison with set inclusion. Indeed,

e → e′ ≡ γ (e) ⊂ γ (e′). (2.36)

The following algorithm can be used to construct causal histories:

• Each pi ∈ G starts with θ = ∅.
• Every time pi receives a message m from p j it constructs

γ (ei) = γ (e j) ∪ γ (ek) (2.37)

with ei the receive event, e j the previous local event of pi , ek the send event of process p j .

Unfortunately, this concatenation of histories is impractical because the causal histories grow very fast.
Now we present a protocol to construct consistent global states based on the monitoring concepts

discussed in this section. We assume a fully connected network; recall that given two processes pi and
p j , the state ξi, j of the channel from pi to p j consists of messages sent by pi but not yet received by
p j . The snapshot protocol of Chandy and Lamport consists of three steps [72]:

1. Process p0 sends to itself a “take snapshot” message.
2. Let p f be the process from which pi receives the “take snapshot” message for the first time. Upon

receiving the message, the process pi records its local state, σi , and relays the “take snapshot” along
all its outgoing channels without executing any events on behalf of its underlying computation.
Channel state ξ f ,i is set to empty, and process pi starts recording messages received over each of
its incoming channels.

3. Let ps be the process from which pi receives the “take snapshot” message after the first time. Process
pi stops recording messages along the incoming channel from ps and declares channel state ξs,i as
those messages that have been recorded.

Each “take snapshot” message crosses each channel exactly once, and every process pi has made its
contribution to the global state. A process records its state the first time it receives a “take snapshot”

2.9 Concurrency 41

p0 p1

p5

p4 p3

p2

1 1 1

1

1

2 2
2
2

2

2

2

2

2 2

2
2

2 2 2

2

22
2

2

2 2
2

2

2

FIGURE 2.10

Six processes executing the snapshot protocol.

message and then stops executing the underlying computation for some time. Thus, in a fully connected
network with n processes, the protocol requires n × (n − 1) messages, one on each channel.

For example, consider a set of six processes, each pair of processes being connected by two unidi-
rectional channels, as shown in Figure 2.10. Assume that all channels are empty, ξi, j = 0, i ∈ {0, 5},
j ∈ {0, 5}, at the time when process p0 issues the “take snapshot” message. The actual flow of mes-
sages is:

• In step 0, p0 sends to itself the “take snapshot” message.
• In step 1, process p0 sends five “take snapshot” messages, labeled (1) in Figure 2.10.
• In step 2, each of the five processes p1, p2, p3, p4, and p5 sends a “take snapshot” message labeled

(2) to every other process.

A “take snapshot” message crosses each channel from process pi to p j , i , j ∈ {0, 5} exactly once
and 6 × 5 = 30 messages are exchanged.

2.9 Concurrency
Concurrency means that several activities are executed simultaneously. Concurrency allows us to reduce
the execution time of a data-intensive problem, as discussed in Section 2.1. To exploit concurrency, often

42 CHAPTER 2 Parallel and Distributed Systems

we have to take a fresh look at the problem and design a parallel algorithm. In other instances we can
still use the sequential algorithm in the context of the SPMD paradigm.

Concurrency is a critical element of the design of system software. The kernel of an operating system
exploits concurrency for virtualization of system resources such as the processor and the memory.
Virtualization, covered in depth in Section 5.1, is a system design strategy with a broad range of
objectives, including:

• Hiding latency and performance enhancement (e.g., schedule a ready-to-run thread when the current
thread is waiting for the completion of an I/O operation).

• Avoiding limitations imposed by the physical resources (e.g., allow an application to run in a virtual
address space of a standard size rather than be restricted by the physical memory available on a
system).

• Enhancing reliability and performance, as in the case of RAID systems mentioned in Section 3.5.

Sometimes concurrency is used to describe activities that appear to be executed simultaneously,
though only one of them may be active at any given time, as in the case of processor virtualization,
when multiple threads appear to run concurrently on a single processor. A thread can be suspended
due to an external event and a context switch to a different thread takes place. The state of the first
thread is saved and the state of another thread ready to proceed is loaded and the thread is activated.
The suspended thread will be reactivated at a later point in time.

Dealing with some of the effects of concurrency can be very challenging. Context switching could
involve multiple components of an OS kernel, including the Virtual Memory Manager (VMM), the
Exception Handler (EH), the Scheduler (S), and the Multilevel Memory Manager (MLMM). When a
page fault occurs during the fetching of the next instruction, multiple context switches are necessary,
as shown in Figure 2.11.

Concurrency is often motivated by the desire to enhance system performance. For example, in a
pipelined computer architecture, multiple instructions are in different phases of execution at any given
time. Once the pipeline is full, a result is produced at every pipeline cycle; an n-stage pipeline could
potentially lead to a speed-up by a factor of n. There is always a price to pay for increased performance,
and in this example it is design complexity and cost. An n-stage pipeline requires n execution units, one
for each stage, as well as a coordination unit. It also requires careful timing analysis in order to achieve
the full speed-up.

This example shows that the management and coordination of the concurrent activities increase the
complexity of a system. The interaction between pipelining and virtual memory further complicates
the functions of the kernel; indeed, one of the instructions in the pipeline could be interrupted due to a
page fault, and the handling of this case requires special precautions, since the state of the processor is
difficult to define.

In the early days of computing, concurrency was analyzed mostly in the context of the system soft-
ware; nowadays concurrency is a ubiquitous feature of many applications. Embedded systems are a class
of concurrent systems used not only by the critical infrastructure but also by the most diverse systems,
from ignition in a car to oil processing in a refinery, from smart meters to coffee makers. Embedded con-
trollers for reactive real-time applications are implemented as mixed software/hardware systems [294].

Concurrency is exploited by application software to speed up a computation and to allow a number
of clients to access a service. Parallel applications partition the workload and distribute it to multiple

2.9 Concurrency 43

Application
thread 1

Virtual
Memory
Manager

Exception
Handler Scheduler

Multi-Level
Memory
Manager

Application
thread 2

IR PC Translate (PC)
into (Page#,Displ)
Is (Page#) in
primary storage?

YES-compute the
physical address
of the instruction

IR PC

NO page fault
Save PC
Handle page fault
Identify Page #

Issue AWAIT on
behalf of thread 1

AWAIT

SEND(Page #)

Thread 1
WAITING

Thread 2
RUNNING

IR PC
Load PC

of thread 2

Find a block in
primary storage

block ON?
YES-write block to
secondary storage

NO-fetch block
corresponding to
missing page

I/O operation
complets

ADVANCE

Thread 1
RUNNING
Load PC

of thread 1

IR PC

FIGURE 2.11

Context switching when a page fault occurs during the instruction fetch phase. The VMM attempts to translate
the virtual address of a next instruction of thread 1 and encounters a page fault. Then thread 1 is suspended
waiting for an event when the page is brought into the physical memory from the disk. The Scheduler
dispatches thread 2. To handle the fault, the Exception Handler invokes the MLMM.

threads running concurrently. Distributed applications, including transaction management systems and
applications based on the client-server paradigm discussed in Section 2.13, use concurrency extensively
to improve the response time. For example, a Web server spawns a new thread when a new request
is received; thus, multiple server threads run concurrently. A main attraction for hosting Web-based

44 CHAPTER 2 Parallel and Distributed Systems

applications is the cloud elasticity – the ability of a service running on a cloud to acquire resources as
needed and to pay for these resources as they are consumed.

Communication channels allow concurrent activities to work in concert and to coordinate. Commu-
nication protocols allow us to transform noisy and unreliable channels into reliable ones that deliver
messages in order. As mentioned earlier, concurrent activities communicate with one another via shared
memory or via message passing. Multiple instances of a cloud application, a server and the clients of the
service it provides, and many other applications communicate via message passing. The Message Pass-
ing Interface (MPI) supports both synchronous and asynchronous communication, and it is often used
by parallel and distributed applications. Message passing enforces modularity, as we see in Section 2.13,
and prevents the communicating activities from sharing their fate; a server could fail without affecting
the clients that did not use the service during the period the server was unavailable.

The communication patterns in the case of a parallel application are more structured, whereas pat-
terns of communication for concurrent activities of a distributed application are more dynamic and
unstructured. Barrier synchronization requires the threads running concurrently to wait until all of them
have completed the current task before proceeding to the next. Sometimes one of the activities, a coor-
dinator, mediates communication among concurrent activities; in other instances individual threads
communicate directly with one another.

2.10 Atomic actions
Parallel and distributed applications must take special precautions for handling shared resources. For
example, consider a financial application in which the shared resource is an account record. A thread
running on behalf of a transaction first accesses the account to read the current balance, then updates
the balance, and finally, writes back the new balance. When a thread is interrupted before being able
to complete the three steps of the process, the results of the financial transactions are incorrect if
another thread operating on the same account is allowed to proceed. Another challenge is to deal with
a transaction involving the transfer from one account to another. A system crash after the completion
of the operation on the first account will again lead to an inconsistency – the amount debited from the
first account is not credited to the second.

In these cases, as in many other similar situations, a multistep operation should be allowed to proceed
to completion without any interruptions, and the operation should be atomic. An important observation
is that such atomic actions should not expose the state of the system until the action is completed. Hiding
the internal state of an atomic action reduces the number of states a system can be in; thus, it simplifies
the design and maintenance of the system. An atomic action is composed of several steps, each of which
may fail; therefore, we have to take additional precautions to avoid exposing the internal state of the
system in case of such a failure.

The discussion of the transaction system suggests that an analysis of atomicity should pay special
attention to the basic operation of updating the value of an object in storage. Even to modify the contents
of a memory location, several machine instructions must be executed: load the current value in a register,
modify the contents of the register, and store back the result.

Atomicity cannot be implemented without some hardware support; indeed, the instruction sets of
most processors support the test-and-set instruction, which writes to a memory location and returns

2.10 Atomic Actions 45

Pending

Committed

Discarded

Commit

Abort

New action

Aborted

FIGURE 2.12

The states of an all-or-nothing action.

the old content of that memory cell as noninterruptible operations. Other architectures support
compare-and-swap, an atomic instruction that compares the contents of a memory location to a given
value and, only if the two values are the same, modifies the contents of that memory location to a given
new value.

Two flavors of atomicity can be distinguished: all-or-nothing and before-or-after atomicity. All-
or-nothing means that either the entire atomic action is carried out, or the system is left in the same
state it was before the atomic action was attempted. In our examples a transaction is either carried out
successfully, or the record targeted by the transaction is returned to its original state. The states of an
all-or-nothing action are shown in Figure 2.12.

To guarantee the all-or-nothing property of an action we have to distinguish preparatory actions
that can be undone from irreversible ones, such as the alteration of the only copy of an object. Such
preparatory actions are as follows: allocation of a resource, fetching a page from secondary storage,
allocation of memory on the stack, and so on. One of the golden rules of data management is never to
change the only copy; maintaining the history of changes and a log of all activities allows us to deal
with system failures and to ensure consistency.

An all-or-nothing action consists of a pre-commit and a post-commit phase; during the former it
should be possible to back up from it without leaving any trace, whereas the latter phase should be
able to run to completion. The transition from the first to the second phase is called a commit point.
During the pre-commit phase all steps necessary to prepare the post-commit phase – for example, check
permissions, swap in main memory all pages that may be needed, mount removable media, and allocate
stack space – must be carried out; during this phase no results should be exposed and no irreversible
actions should be carried out. Shared resources allocated during the pre-commit phase cannot be released
until after the commit point. The commit step should be the last step of an all-or-nothing action.

A discussion of storage models illustrates the effort required to support all-or-nothing atomicity (see
Figure 2.13). The common storage model implemented by hardware is the so-called cell storage, a
collection of cells each capable of holding an object (e.g., the primary memory of a computer where
each cell is addressable). Cell storage does not support all-or-nothing actions. Once the content of a cell
is changed by an action, there is no way to abort the action and restore the original content of the cell.

To be able to restore a previous value we have to maintain a version history for each variable in the
cell storage. The storage model that supports all-or-nothing actions is called journal storage. Now the
cell storage is no longer accessible to the action because the access is mitigated by a storage manager.
In addition to the basic primitives to read an existing value and to write a new value in cell storage,
the storage manager uniquely identifies an action that changes the value in cell storage and, when the

46 CHAPTER 2 Parallel and Distributed Systems

a zk

a a a k k k z z z

Cell storage

Version history of a each variable in cell storage

Cell storageM
a
n
a
g
e
r

Journal storage

Catalog

Version histories

Outcome records

ACTION

READ

WRITE

COMMIT

ABORT

FIGURE 2.13

Storage models. Cell storage does not support all-or-nothing actions. When we maintain version histories, it is
possible to restore the original content, but we need to encapsulate the data access and provide mechanisms
to implement the two phases of an atomic all-or-nothing action. Journal storage does precisely that.

action is aborted, is able to retrieve the version of the variable before the action and restore it. When
the action is committed, then the new value should be written to the cell.

Figure 2.13 shows that for a journal storage, in addition to the version histories of all variables
affected by the action, we have to implement a catalog of variables and maintain a record to identify
each new action. A new action first invokes the Action primitive; at that time an outcome record uniquely
identifying the action is created. Then, every time the action accesses a variable, the version history is
modified. Finally, the action invokes either a Commit or an Abort primitive. In the journal storage model
the action is atomic and follows the state transition diagram in Figure 2.12.

Before-or-after atomicity means that, from the point of view of an external observer, the effect of
multiple actions is as though these actions have occurred one after another, in some order. A stronger
condition is to impose a sequential order among transitions. In our example the transaction acting on
two accounts should either debit the first account and then credit the second one or leave both accounts
unchanged. The order is important because the first account cannot be left with a negative balance.

Atomicity is a critical concept in our efforts to build reliable systems from unreliable components and,
at the same time, to support as much parallelism as possible for better performance. Atomicity allows
us to deal with unforseen events and to support coordination of concurrent activities. The unforseen
event could be a system crash, a request to share a control structure, the need to suspend an activity,

2.10 Atomic Actions 47

and so on; in all these cases we have to save the state of the process or of the entire system to be able
to restart it at a later time.

Because atomicity is required in many contexts, it is desirable to have a systematic approach rather
than an ad hoc one. A systematic approach to atomicity must address several delicate questions:

• How to guarantee that only one atomic action has access to a shared resource at any given time.
• How to return to the original state of the system when an atomic action fails to complete.
• How to ensure that the order of several atomic actions leads to consistent results.

Answers to these questions increase the complexity of the system and often generate additional
problems. For example, access to shared resources can be protected by locks, but when there are
multiple shared resources protected by locks, concurrent activities may deadlock. A lock is a construct
that enforces sequential access to a shared resource; such actions are packaged in the critical sections of
the code. If the lock is not set, a thread first locks the access, then enters the critical section, and finally
unlocks it; a thread that wants to enter the critical section finds the lock set and waits for the lock to be
reset. A lock can be implemented using the hardware instructions supporting atomicity.

Semaphores and monitors are more elaborate structures ensuring serial access. Semaphores force
processes to queue when the lock is set and are released from this queue and allowed to enter the critical
section one by one. Monitors provide special procedures to access the shared data (see Figure 2.14).

FIGURE 2.14

A monitor provides special procedures to access the data in a critical section.

48 CHAPTER 2 Parallel and Distributed Systems

The mechanisms for the process coordination we described require the cooperation of all activities, the
same way traffic lights prevent accidents only as long as drivers follow the rules.

2.11 Consensus protocols
Consensus is a pervasive problem in many areas of human endeavor; consensus is the process of agreeing
to one of several alternatives proposed by a number of agents. We restrict our discussion to the case
of a distributed system when the agents are a set of processes expected to reach consensus on a single
proposed value.

No fault-tolerant consensus protocol can guarantee progress [123], but protocols that guarantee
freedom from inconsistencies (safety) have been developed. A family of protocols to reach consensus
based on a finite state machine approach is called Paxos.5

A fair number of contributions to the family of Paxos protocols are discussed in the literature. Leslie
Lamport has proposed several versions of the protocol, including Disk Paxos, Cheap Paxos, Fast Paxos,
Vertical Paxos, Stoppable Paxos, Byzantizing Paxos by Refinement, Generalized Consensus and Paxos,
and Leaderless Byzantine Paxos. He has also published a paper on the fictional part-time parliament in
Paxos [206] and a layman’s dissection of the protocol [207].

The consensus service consists of a set of n processes. Clients send requests to processes and propose a
value and wait for a response; the goal is to get the set of processes to reach consensus on a single proposed
value. The basic Paxos protocol is based on several assumptions about the processors and the network:

• The processes run on processors and communicate through a network; the processors and the network
may experience failures, but not Byzantine failures.6

• The processors: (i) operate at arbitrary speeds; (ii) have stable storage and may rejoin the protocol
after a failure; and (iii) can send messages to any other processor.

• The network: (i) may lose, reorder, or duplicate messages; (ii) sends messages are asynchronously
that may take arbitrarily long times to reach the destination.

The basic Paxos considers several types of entities: (a) client, an agent that issues a request and waits
for a response; (b) proposer, an agent with the mission to advocate a request from a client, convince
the acceptors to agree on the value proposed by a client, and act as a coordinator to move the protocol
forward in case of conflicts; (c) acceptor, an agent acting as the fault-tolerant “memory” of the protocol;
(d) learner, an agent acting as the replication factor of then protocol and taking action once a request
has been agreed upon; and finally, (e) the leader, a distinguished proposer.

5Paxos is a small Greek island in the Ionian Sea. A fictional consensus procedure is attributed to an
ancient Paxos legislative body. The island had a part-time parliament because its inhabitants were more inter-
ested in other activities than in civic work; “the problem of governing with a part-time parliament bears
a remarkable correspondence to the problem faced by today’s fault-tolerant distributed systems, where legis-
lators correspond to processes and leaving the Chamber corresponds to failing,” according to Leslie Lamport
[206]. (For additional papers see http://research.microsoft.com/en-us/um/people/lamport/pubs/
pubs.html.)
6A Byzantine failure in a distributed system could be an omission failure, such as a crash failure or failure to receive a request
or to send a response. It could also be a commission failure, such as processing a request incorrectly, corrupting the local
state, and/or sending an incorrect or inconsistent response to a request.

2.11 Consensus Protocols 49

A quorum is a subset of all acceptors. A proposal has a proposal number pn and contains a value v.
Several types of requests flow through the system: prepare, accept.

In a typical deployment of an algorithm, an entity plays three roles: proposer, acceptor, and learner.
Then the flow of messages can be described as follows [207]: “Clients send messages to a leader; during
normal operations the leader receives the client’s command, assigns it a new command number i , and then
begins the i-th instance of the consensus algorithm by sending messages to a set of acceptor processes.”
By merging the roles, the protocol “collapses” into an efficient client/master/replica-style protocol.

A proposal consists of a pair, a unique proposal number and a proposed value, (pn, v); multiple
proposals may propose the same value v. A value is chosen if a simple majority of acceptors have
accepted it. We need to guarantee that at most one value can be chosen; otherwise there is no consensus.
The two phases of the algorithm are described here.

Phase I

1. Proposal preparation: A proposer (the leader) sends a proposal (pn = k, v). The proposer
chooses a proposal number pn = k and sends a prepare message to a majority of acceptors
requesting:

a. that a proposal with pn < k should not be accepted;
b. the pn < k of the highest number proposal already accepted by each acceptor.

2. Proposal promise: An acceptor must remember the highest proposal number it has ever
accepted as well as the highest proposal number it has ever responded to. The acceptor can
accept a proposal with pn = k if and only if it has not responded to a prepare request with
pn > k; if it has already replied to a prepare request for a proposal with pn > k, then it
should not reply. Lost messages are treated as an acceptor that chooses not to respond.

Phase II

1. Accept request: If the majority of acceptors respond, the proposer chooses the value v of the
proposal as follows:

a. the value v of the highest proposal number selected from all the responses;
b. an arbitrary value if no proposal was issued by any of the proposers.

The proposer sends an accept request message to a quorum of acceptors including (pn = k, v).
2. Accept: If an acceptor receives an accept message for a proposal with the proposal number

pn = k, it must accept it if and only if it has not already promised to consider proposals with a
pn > k. If it accepts the proposal, it should register the value v and send an accept message to
the proposer and to every learner; if it does not accept the proposal, it should ignore the request.

The following properties of the algorithm are important to show its correctness: (1) A proposal number
is unique; (2) any two sets of acceptors have at least one acceptor in common; and (3) the value sent out
in Phase II of the algorithm is the value of the highest numbered proposal of all the responses in Phase I.

Figure 2.15 illustrates the flow of messages for the consensus protocol. A detailed analysis of the mes-
sage flows for different failure scenarios and of the properties of the protocol can be found in [207]. We
only mention that the protocol defines three safety properties: (1) nontriviality, the only values that can be
learned are proposed values; (2) consistency, at most one value can be learned; and (3) liveness, if a value

50 CHAPTER 2 Parallel and Distributed Systems

Leader

2. Promise
3. Accept
request

Acceptor
A

1. Prepare

4. Accept

Acceptor
B

Acceptor
C

1. Prepare

2. Promise
3. Accept
request

1. Prepare

v=a

v=c

v=b

v=d

v=e

v=f

5. The leader accepts a
proposal and informs
all acceptors that the
proposal has been

accepted

Accepted
proposal

Accepted
proposal

Accepted
proposal

Individual clients
request different values

a,b,c,d,e,f...
1. Prepare — the leader chooses a proposal with proposal number pn=k.
2. Promise — an acceptor promises to accept the proposal only if it has not
responded to a proposal with pn > k. (B does not respond)
3. Accept request — the leader chooses the value v of the highest proposal
number from all acceptors who have sent a promise and sends it to all of them.
4. Accept — an acceptor accepts a proposal with pn=k only if it has not promised
to accept a proposal with pn > k. Stores the accepted value in persistent memory.
5. The leader accepts a proposal if the quorum of acceptors send an accept
message for the proposal with pn=k. (C does not accept)

FIGURE 2.15

The flow of messages for the Paxos consensus algorithm. Individual clients propose different values to the
leader, who initiates the algorithm. Acceptor A accepts the value in the message with proposal number pn = k;
acceptor B does not respond with a promise, while acceptor C responds with a promise but ultimately does
not accept the proposal.

v has been proposed, eventually every learner will learn some value, provided that sufficient processors
remain non-faulty. Figure 2.16 shows the message exchange when there are three actors involved.

In Section 4.5 we present a consensus service, the ZooKeeper, based on the Paxos protocol. In
Section 8.7 we discuss Chubby, a locking service based on the algorithm.

2.12 Modeling Concurrency with Petri Nets 51

C P A 1 A 2 A 3 L 1 L2

client request (v)

prepare request (v)

promise request (1, null)

accept request (1, v)

accepted (1, v)

client response (v)

C P A 1 A 2 A 3 L 1 L2

client request (v)

prepare request (v)

promise request (1, null)

accept request (1, v)

accepted (1, v)

client response (v)

(a)

(b)

X
A 2 fails

FIGURE 2.16

The basic Paxos with three actors: proposer (P), three acceptors (A1, A2, A3), and two learners (L1, L2).
The client (C) sends a request to one of the actors playing the role of a proposer. The entities involved are (a)
successful first round when there are no failures and (b) successful first round of Paxos when an acceptor fails.

2.12 Modeling concurrency with Petri nets
In 1962 Carl Adam Petri introduced a family of graphs, the so-called Petri nets (PNs) [291]. PNs are
bipartite graphs populated with tokens that flow through the graph that are used to model the dynamic
rather than static behavior of systems (e.g., detecting synchronization anomalies).

A bipartite graph is one with two classes of nodes; arcs always connect a node in one class with
one or more nodes in the other class. In the case of Petri nets the two classes of nodes are places and
transitions; thus, the name place-transition (P/T) nets is often used for this class of bipartite graphs.
Arcs connect one place with one or more transitions or a transition with one or more places.

To model the dynamic behavior of systems, the places of a Petri net contain tokens. Firing of
transitions removes tokens from the input places of the transition and adds them to its output places
(see Figure 2.17).

Petri nets can model different activities in a distributed system. A transition may model the occur-
rence of an event, the execution of a computational task, the transmission of a packet, a logic state-
ment, and so on. The input places of a transition model the pre-conditions of an event, the input data

52 CHAPTER 2 Parallel and Distributed Systems

t1

(a) (b) (c)

p

3

2 1 2 1 2 1

3 3

1p1 p2 p1 p2p2

t1t1

p 3 p3 p3

FIGURE 2.17

Petri nets, firing rules. (a) An unmarked net with one transition t1 with two input places, p1 and p2, and
one output place, p3. (b) The marked net, the net with places populated by tokens; the net before firing the
enabled transition t1. (c) The marked net after firing transition t1. Two tokens from place p1 and one from
place p2 are removed and transported to place p3.

t1

(a) (b) (c)

p1p1 p2p2

t1t1

p1

t2t2 t2

p4

t3

t3

p3

FIGURE 2.18

Petri nets modeling. (a) Choice: Only one of transitions t1, or t2 may fire. (b) Symmetric confusion:
Transitions t1 and t3 are concurrent and, at the same time, they are in conflict with t2. If t2 fires, then t1
and/or t3 are disabled. (c) Asymmetric confusion: Transition t1 is concurrent with t3 and is in conflict with
t2 if t3 fires before t1.

for the computational task, the presence of data in an input buffer, or the pre-conditions of a logic
statement. The output places of a transition model the post-conditions associated with an event, the
results of the computational task, the presence of data in an output buffer, or the conclusions of a logic
statement.

The distribution of a token in place of a PN at a given time is called the marking of the net and
reflects the state of the system being modeled. PNs are very powerful abstractions and can express both
concurrency and choice, as we can see in Figure 2.18.

Petri nets can model concurrent activities. For example, the net in Figure 2.18(a) models conflict
or choice; only one of the transitions t1 and t2 may fire, but not both. Two transitions are said to be
concurrent if they are causally independent. Concurrent transitions may fire before, after, or in parallel
with each other; examples of concurrent transitions are t1 and t3 in Figure 2.18(b) and (c).

2.12 Modeling Concurrency with Petri Nets 53

When choice and concurrency are mixed, we end up with a situation called confusion. Symmetric
confusion means that two or more transitions are concurrent and, at the same time, they are in conflict
with another one. For example, transitions t1 and t3 in Figure 2.18(b) are concurrent and, at the same
time, they are in conflict with t2. If t2 fires, either one or both of them will be disabled. Asymmetric
confusion occurs when a transition t1 is concurrent with another transition t3 and will be in conflict with
t2 if t3 fires before t1, as shown in Figure 2.18(c).

The concurrent transitions t2 and t3 in Figure 2.19(a) model concurrent execution of two processes.
A marked graph can model concurrency but not choice; transitions t2 and t3 in Figure 2.19(b) are con-
current, so there is no causal relationship between them. Transition t4 and its input places p3 and p4 in
Figure 2.19(b) model synchronization; t4 can only fire if the conditions associated with p3 and p4 are
satisfied.

Petri nets can be used to model priorities. The net in Figure 2.19(c) models a system with two
processes modeled by transitions t1 and t2; the process modeled by t2 has a higher priority than the
one modeled by t1. If both processes are ready to run, places p1 and p2 hold tokens. When the two
processes are ready, transition t2 will fire first, modeling the activation of the second process. Only after
t2 is activated will transition t1 fire, modeling the activation of the first process.

t4

(a) (b)

(c)

p4

t3

n

n
n

n (d)

p1

p1

p1

p1

p2

p2

p2

p3

p2 p3

p3

p3

t1

t1t1

t1

p4

p4

p4

t2t2

t2

t2
t3

t3

t4

t4

FIGURE 2.19

(a) A state machine. There is the choice of firing t1, or t2; only one transition fires at any given time, so
concurrency is not possible. (b) A marked graph can model concurrency but not choice; transitions t2 and t3
are concurrent, so there is no causal relationship between them. (c) An extended net used to model priorities;
the arc from p2 to t1 is an inhibitor arc. The process modeled by transition t1 is activated only after the
process modeled by transition t2 is activated. (d) Modeling exclusion; transitions t1 and t2 model writing
and, respectively, reading, with n processes to a shared memory. At any given time only one process may
write, but any subset of the n processes may read at the same time, provided that no process writes.

54 CHAPTER 2 Parallel and Distributed Systems

Petri nets are able to model exclusion. For example, the net in Figure 2.19(d), models a group of n
concurrent processes in a shared-memory environment. At any given time only one process maywrite,
but any subset of the n processes may read at the same time, provided that no process writes. Place p3
models the process allowed to write, p4 the ones allowed to read, p2 the ones ready to access the
shared memory, and p1 the running tasks. Transition t2 models the initialization/selection of the process
allowed to write and t1 of the processes allowed to read, whereas t3 models the completion of a
write and t4 the completion of a read. Indeed, p3 may have at most one token, whereas p4 may have
at most n. If all n processes are ready to access the shared memory, all n tokens in p2 are consumed when
transition t1 fires. However, place p4 may contain n tokens obtained by successive firings of transition t2.

After this informal discussion of Petri nets we switch to a more formal presentation and give several
definitions.

Labeled Petri Net. A tuple N = (p, t, f , l) such that:

• p ⊆ U is a finite set of places,
• t ⊆ U is a finite set of transitions,
• f ⊆ (p × t) ∪ (t × p) is a set of directed arcs, called flow relations, and
• l : t → L is a labeling or a weight function,

with U a universe of identifiers and L a set of labels. The weight function describes the number of tokens
necessary to enable a transition. Labeled PNs describe a static structure; places may contain tokens,
and the distribution of tokens over places defines the state, or the markings of the PN. The dynamic
behavior of a PN is described by the structure together with the markings of the net.

Marked Petri Net. A pair (N , s) where N = (p, t, f , l) is a labeled PN and s is a bag7 over p
denoting the markings of the net.

Preset and Postset of Transitions and Places. The preset of transition ti denoted as •ti is the set of
input places of ti , and the postset denoted by ti• is the set of the output places of ti . The preset of place
p j denoted as •p j is the set of input transitions of p j , and the postset denoted by p j• is the set of the
output transitions of p j .

Figure 2.17(a) shows a PN with three places, p1, p2, and p3, and one transition, t1. The weights of
the arcs from p1 and p2 to t1 are two and one, respectively; the weight of the arc from t1 to p3 is three.

The preset of transition t1 in Figure 2.17(a) consists of two places, •t1 = {p1, p2}, and its postset
consist of only one place, t1• = {p3}. The preset of place p4 in Figure 2.19(a) consists of transitions t3
and t4, •p4 = {t3, t4}, and the postset of p1 is p1• = {t1, t2}.
Ordinary Net. A PN is ordinary if the weights of all arcs are 1.

The nets in Figure 2.19 are ordinary nets since, the weights of all arcs are 1.

Enabled Transition. A transition ti ∈ t of the ordinary PN (N , s), with s the initial marking of N ,
is enabled if and only if each of its input places contain a token, (N , s)[ti >⇔ •ti ∈ s. The notation
(N , s)[ti > means that ti is enabled.

7A bag B(A) is a multiset of symbols from an alphabet, A; it is a function from A to the set of natural numbers. For example,
[x3, y4, z5, w6|P(x, y, z, w)] is a bag consisting of three elements x , four elements y, five elements z, and six elements w

such that the P(x, y, z, w) holds. P is a predicate on symbols from the alphabet. x is an element of a bag A denoted as x ∈ A
if x ∈ A and if A(x) > 0.

2.12 Modeling Concurrency with Petri Nets 55

The marking of a PN changes as a result of transition firing; a transition must be enabled in order to fire.

Firing Rule. The firing of the transition ti of the ordinary net (N , s) means that a token is removed
from each of its input places and one token is added to each of its output places, so its marking changes
s �→ (s − •ti + ti •). Thus, firing of transition ti changes a marked net (N , s) into another marked
net (N , s − •ti + ti •).

Firing Sequence. A nonempty sequence of transitions σ ∈ t∗ of the marked net (N , s0) with N =
(p, t, f , l) is called a firing sequence if and only if there exist markings s1, s2, . . . , sn ∈ B(p) and
transitions t1, t2, . . . , tn ∈ t such that σ = t1, t2, . . . , tn and for i ∈ (0, n), (N , si)ti+1 > and si+1 =
si − •ti + ti•. All firing sequences that can be initiated from marking s0 are denoted as σ(s0).

Reachability. The problem of finding whether marking sn is reachable from the initial marking s0, sn ∈
σ(s0). Reachability is a fundamental concern for dynamic systems; the reachability problem is decidable,
but reachability algorithms require exponential time and space.

Liveness. A marked Petri net (N , s0) is said to be live if it is possible to fire any transition starting from
the initial marking, s0. The absence of deadlock in a system is guaranteed by the liveness of its net model.

Incidence Matrix. Given a Petri net with n transitions and m places, the incidence matrix F = [fi, j] is
an integer matrix with fi, j = w(i, j)−w(j, i). Here w(i, j) is the weight of the flow relation (arc) from
transition ti to its output place p j , and w(j, i) is the weight of the arc from the input place p j to transition
ti . In this expression w(i, j) represents the number of tokens added to the output place p j and w(j, i) the
ones removed from the input place p j when transition ti fires. FT is the transpose of the incidence matrix.

A marking sk can be written as an m × 1 column vector, and its j-th entry denotes the number of
tokens in place j after some transition firing. The necessary and sufficient condition for transition ti to
be enabled at a marking s is that w(j, i) � s(j)∀s j ∈ •ti , the weight of the arc from every input place
of the transition, be smaller or equal to the number of tokens in the corresponding input place.

Extended Nets. PNs with inhibitor arcs; an inhibitor arc prevents the enabling of a transition. For
example, the arc from p2 to t1 in the net in Figure 2.19(a) is an inhibitor arc; the process modeled by
transition t1 can be activated only after the process modeled by transition t2 is activated.

Modified Transition Enabling Rule for Extended Nets. A transition is not enabled if one of the
places in its preset is connected with the transition with an inhibitor arc and if the place holds a token.
For example, transition t1 in the net in Figure 2.19 (c) is not enabled while place p2 holds a token.

Based on their structural properties, Petri nets can be partitioned in several classes:

• State machines are used to model finite state machines and cannot model concurrency and synchro-
nization.

• Marked graphs cannot model choice and conflict.
• Free-choice nets cannot model confusion.
• Extended free-choice nets cannot model confusion but they do allow inhibitor arcs.
• Asymmetric choice nets can model asymmetric confusion but not symmetric ones.

This partitioning is based on the number of input and output flow relations from/to a transition or
a place and by the manner in which transitions share input places. The relationships between different
classes of Petri nets are illustrated in Figure 2.20.

56 CHAPTER 2 Parallel and Distributed Systems

Marked
Graphs

Free
Choice

Asymmetric
Choice

Petri Nets

State
Machines

FIGURE 2.20

Classes of Petri nets.

State Machine. A Petri net is a state machine if and only if ∀ti ∈ t then (| • ti | = 1 ∧ |ti • | = 1).
All transitions of a state machine have exactly one incoming and one outgoing arc. This topological
constraint limits the expressiveness of a state machine, so no concurrency is possible. For example, the
transitions t1, t2, t3, and t4 of the state machine in Figure 2.19(a) have only one input and one output arc,
so the cardinality of their presets and postsets is one. No concurrency is possible; once a choice was made
by firing either t1, or t2, the evolution of the system is entirely determined. This state machine has four
places p1, p2, p3, and p4 and the marking is a 4-tuple (p1, p2, p3, p4); the possible markings of this net
are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), with a token in places p1, p2, p3, or p4, respectively.

Marked Graph. A Petri net is a marked graph if and only if ∀pi ∈ p then (|• pi | = 1∧|pi •| = 1). In
a marked graph each place has only one incoming and one outgoing flow relation; thus, marked graphs
do no not allow modeling of choice.

Free Choice, Extended Free Choice, and Asymmetric Choice Petri Nets. The marked net, (N , s0)

with N = (p, t, f , l) is a free-choice net if and only if

(• ti) ∩ (• t j) = ∅ ⇒ | • ti | = | • t j | ∀ti , j ∈ t . (2.38)

N is an extended free-choice net if ∀ti , t j ∈ t then (• ti) ∩ (• t j) = ∅ ⇒ •ti = •t j .
N is an asymmetric choice net if and only if (•ti)∩(•t j) �= ∅ ⇒ (•ti ⊆ •t j) or (•ti ⊇ •t j),∀ti , t j ∈ t .

In an extended free-choice net, if two transitions share an input place they must share all places in
their presets. In an asymmetric choice net, two transitions may share only a subset of their input places.

Several extensions of Petri nets have been proposed. For example, colored Petri nets (CPSs) allow
tokens of different colors, thus increasing the expressivity of the PNs but not simplifying their analysis.
Several extensions of Petri nets to support performance analysis by associating a random time with each
transition have been proposed. In case of stochastic Petri nets (SPNs), a random time elapses between
the time a transition is enabled and the moment it fires. This random time allows the model to capture
the service time associated with the activity modeled by the transition.

2.13 Enforced Modularity: The Client-Server Paradigm 57

Applications of stochastic Petri nets to performance analysis of complex systems is generally limited
by the explosion of the state space of the models. Stochastic high-level Petri nets (SHLPNs) were
introduced in 1988 [219]; they allow easy identification of classes of equivalent markings even when the
corresponding aggregation of states in the Markov domain is not obvious. This aggregation could reduce
the size of the state space by one or more orders of magnitude, depending on the system being modeled.

2.13 Enforced modularity: the client-server paradigm
Modularity. Modularity is a basic concept in the design of man-made systems. A complex system is
made of components, or modules, with well-defined functions. Modularity supports the separation of
concerns, encourages specialization, improves maintainability, reduces costs, and decreases the devel-
opment time of a system. Hence, it is no surprise that the hardware as well as the software systems are
composed of modules that interact with one another through well-defined interfaces.

In this section we are only concerned with software modularity. We distinguish soft modularity from
enforced modularity. The former means to divide a program into modules that call each other and
communicate using shared memory or follow the procedure call convention. The steps involved in the
transfer of the flow of control between the caller and the callee are: (i) The caller saves its state, including
the registers, the arguments, and the return address, on the stack; (ii) the callee loads the arguments
from the stack, carries out the calculations, and then transfers control back to the caller; (iii) the caller
adjusts the stack, restores its registers, and continues its processing.

Soft modularity hides the details of the implementation of a module and has many advantages. Once
the interfaces of the modules are defined, the modules can be developed independently, and a module
can be replaced with a more elaborate or a more efficient one as long as its interfaces with the other
modules are not changed. The modules can be written using different programming languages and can
be tested independently.

Soft modularity presents a number of challenges. It increases the difficulty of debugging; for example,
a call to a module with an infinite loop will never return. There could be naming conflicts and wrong
context specifications. The caller and the callee are in the same address space and may misuse the stack
(e.g., the callee may use registers that the caller has not saved on the stack, and so on). A strongly typed
language may enforce soft modularity by ensuring type safety at compile or at run time, it may reject
operations or function classes that disregard the data types, or it may not allow class instances to have
their classes altered. Soft modularity may be affected by errors in the run-time system, errors in the
compiler, or by the fact that different modules are written in different programming languages.

The Client-Server Paradigm. The ubiquitous client-server paradigm is based on enforced modularity;
this means that the modules are forced to interact only by sending and receiving messages. This paradigm
leads to a more robust design where the clients and the servers are independent modules and may fail
separately. Moreover, the servers are stateless; they do not have to maintain state information. The server
may fail and then come up without the clients being affected or even noticing the failure of the server.
The system is more robust since it does not allow errors to propagate. Enforced modularity makes an
attack less likely because it is difficult for an intruder to guess the format of the messages or the sequence
numbers of segments when messages are transported by Transport Control Protocol (TCP).

Last but not least, resources can be managed more efficiently; for example, a server typically consists
of an ensemble of systems: a front-end system that dispatches the requests to multiple back-end systems

58 CHAPTER 2 Parallel and Distributed Systems

that process the requests. Such an architecture exploits the elasticity of a computer cloud infrastructure.
The larger the request rate, the larger the number of back-end systems activated.

The client-server paradigm allows systems with different processor architecture (e.g., 32-bit or
64-bit), different operating systems (e.g., multiple versions of operating systems such as Linux, Mac
OS, or Microsoft Windows), different libraries and other system software to cooperate. The client-server
paradigm increases flexibility and choice; the same service could be available from multiple providers,
or a server may use services provided by other servers, a client may use multiple servers, and so on.

System heterogeneity is a blessing in disguise. The problems it creates outweigh its appeal. It adds
to the complexity of the interactions between a client and a server because it may require conversion
from one data format to another (e.g., from little-endian to big-endian or vice versa), or it may require
conversion to a canonical data representation. There is also uncertainty in terms of response time because
some servers may be more performant than others or may have a lower workload.

A major difference between the basic models of grid and cloud computing is that the former do
not impose any restrictions regarding heterogeneity of the computing platforms. On the other hand, a
computer cloud is a collection of homogeneous systems, systems with similar architecture and running
under the same or very similar system software.

The clients and the servers communicate through a network that itself can be congested. Transferring
large volumes of data through the network can be time consuming; this is a major concern for data-
intensive applications in cloud computing. Communication through the network adds additional delay
to the response time. Security becomes a major concern because the traffic between a client and a server
can be intercepted.

Remote Procedure Call (RPC). RPC is often used for the implementation of client-server systems
interactions. The RPC standard is described in RFC 1831. To use an RPC, a process may use special
servicesPORTMAP orRPCBIND, available at port 111, to register and for service lookup. RPC messages
must be well structured; they identify the RPC and are addressed to an RPC demon listening at an RPC
port. XDP is a machine-independent representation standard for RPC.

RPCs reduce the so-called fate sharing between caller and callee but take longer than local calls due
to communication delays. Several RPC semantics are implemented:

• At least once. A message is resent several times and an answer is expected. The server may end
up executing a request more than once, but an answer may never be received. These semantics are
suitable for operations free of side effects.

• At most once. A message is acted on at most once. The sender sets up a time-out for receiving the
response; when the time-out expires, an error code is delivered to the caller. These semantics require
the sender to keep a history of the time stamps of all messages because messages may arrive out of
order. These semantics are suitable for operations that have side effects.

• Exactly once. It implements the at most once semantics and requests an acknowledgment from the
server.

Applications of the Client-Server Paradigm. The large spectrum of applications attests to the role
played by the client-server paradigm in the modern computing landscape. Examples of popular applica-
tions of the client-server paradigm are numerous and include the World Wide Web, the Domain Name
System (DNS), X-windows, electronic mail [see Figure 2.21(a)], event services [see Figure 2.21(b)],
and so on.

2.13 Enforced Modularity: The Client-Server Paradigm 59

FIGURE 2.21

(a) Email service. The sender and the receiver communicate asynchronously using inboxes and outboxes.
Mail demons run at each site. (b) An event service supports coordination in a distributed system environment.
The service is based on the publish/subscribe paradigm; an event producer publishes events and an event
consumer subscribes to events. The server maintains queues for each event and delivers notifications to
clients when an event occurs.

60 CHAPTER 2 Parallel and Distributed Systems

The World Wide Web illustrates the power of the client-server paradigm and its effects on society. As
of June 2011 there were close to 350 million Web sites. The Web allows users to access resources such as
text, images, digital music, and any imaginable type of information previously stored in a digital format.
A Web page is created using a description language called Hypertext Markup Language (HTML). The
information in each Web page is encoded and formatted according to some standard (e.g., GIF, JPEG
for images, MPEG for videos, MP3 or MP4 for audio, and so on).

The Web is based on a “pull” paradigm; the resources are stored at the server’s site and the client
pulls them from the server. Some Web pages are created “on the fly”; others are fetched from disk. The
client, called a Web browser, and the server communicate using an application-level protocol HyperText
Transfer Protocol (HTTP) built on top of the Transport Control Protocol (TCP).

Data

Server residence time.
Web page created on the fly

HTTP request
SYN

SYN

ACK

ACK + HTTP request
TCP connection establishment

RTT

Server residence time.
Image retrieved from disk

ACK

ACK

Browser Web Server

Image transmission time

Data

Image

Data transmission time

time time

HTTP request

FIGURE 2.22

Client-server communication, on the World Wide Web. The three-way handshake involves the first three
messages exchanged between the client and the server. Once the TCP connection is established, the HTTP
server takes its time to construct the page to respond the first request. To satisfy the second request, the
HTTP server must retrieve an image from the disk. The response time includes the round-trip-time (RTT),
the server residence time, and the data transmission time.

2.13 Enforced Modularity: The Client-Server Paradigm 61

The Web server, also called an HTTP server, listens at a well-known port, port 80, for connections
from clients. Figure 2.22 shows the sequence of events when a client sends an HTTP request to a
server to retrieve some information and the server constructs the page on the fly; then it requests an
image stored on the disk. First a TCP connection between the client and the server is established using
a process called a three-way handshake; the client provides an arbitrary initial sequence number in a
special segment with the SYN control bit on. Then the server acknowledges the segment and adds its
own arbitrarily chosen initial sequence number. Finally the client sends its own acknowledgment ACK
as well as the HTTP request, and the connection is established. The time elapsed from the initial request
until the server’s acknowledgment reaches the client is the RTT.

The response time, defined as the time from the instance the first bit of the request is sent until the last
bit of the response is received, consists of several components: the RTT, the server residence time, the
time it takes the server to construct the response, and the data transmission time. RTT depends on the
network latency, the time it takes a packet to cross the network from the sender to the receiver; the data
transmission time is determined by the network bandwidth. In turn, the server residence time depends
on the server load.

Often the client and the server do not communicate directly but through a proxy server, as shown in
Figure 2.23. Proxy servers can provide multiple functions; for example, they may filter client requests

HTTP client
Web

Browser
HTTP
server

TCP
port
80

request

response

HTTP client
Web

Browser

HTTP
server

Proxy

request to proxy

response to proxy

response to client

HTTP client
Web

Browser
HTTP
serverTunnel

request

response

request to server

TCP port 80

TCP
port
80

response

request

FIGURE 2.23

A client can communicate directly with the server, it can communicate through a proxy, or it may use tunneling
to cross the network.

62 CHAPTER 2 Parallel and Distributed Systems

and decide whether or not to forward the request based on some filtering rules. The proxy server may
redirect the request to a server in close proximity to the client or to a less loaded server. A proxy can
also act as a cache and provide a local copy of a resource rather than forward the request to the server.

Another type of client-server communication is HTTP tunneling, used most often as a means for
communication from network locations with restricted connectivity. Tunneling means encapsulation of
a network protocol. In our case HTTP acts as a wrapper for the communication channel between the
client and the server (see Figure 2.23).

2.14 Further reading
Seminal papers in distributed systems have been authored by Mani Chandy and Leslie Lamport [72],
by Leslie Lamport [205–207], Hoare [168], and Milner [244]. The collection of contributions with the
title Distributed systems, edited by Sape Mullender, includes some of these papers.

Petri nets were introduced in [291]. An in-depth discussion of concurrency theory and system model-
ing with PNs can be found in [292]. The brief discussion of distributed systems leads to the observation
that the analysis of communicating processes requires a more formal framework. Hoare realized that a
language based on execution traces is insufficient to abstract the behavior of communicating processes
and developed communicating sequential processes (CSPs) [168]. More recently, Milner initiated an
axiomatic theory called the Calculus of Communicating Systems (CCS) [244]. Process algebra is the
study of concurrent communicating processes within an algebraic framework. The process behavior is
modeled as a set of equational axioms and a set of operators. This approach has its own limitations, the
real-time behavior of the processes, so true concurrency still escapes this axiomatization.

The text Computer networks: a top-down approach featuring the internet, by J. A. Kurose and K.
W. Ross is a good introduction to networking. A recent text of Saltzer and Kaashoek [312] covers basic
concepts in computer system design.

2.15 History notes
Two theoretical developments in the 1930s were critical in the development of modern computers. The
first was the publication of Alan Turing’s 1936 paper [354] that provided a definition of a universal
computer, called a Turing machine, which executes a program stored on tape. The paper also proved that
there were problems, such as the halting problem, that could not be solved by any sequential process.
The second major development was the publication in 1937 of Claude Shannon’s master’s thesis at MIT,
“A Symbolic Analysis of Relay and Switching Circuits,” in which he showed that any Boolean logic
expression can be implemented using logic gates.

The first Turing complete8 computing device was the Z3, an electromechanical device built by Konrad
Zuse in Germany in May 1941. The Z3 used a binary floating-point representation of numbers and was
program-controlled by film stock. The first programmable electronic computer, the ENIAC, built at the
Moore School of Electrical Engineering at the University of Pennsylvania by a team led by John Prosper

8A Turing complete computer is equivalent to a universal Turing machine except for memory limitations.

2.15 History Notes 63

Eckart and John Mauchly, became operational in July 1946 [239]. Unlike the Z3, the ENIAC used a
decimal number system and was program-controlled by patch cables and switches.

John von Neumann, the famous mathematician and theoretical physicist, contributed fundamental
ideas for modern computers [60,362,363]. His was one of the most brilliant minds of the 20th century,
with an uncanny ability to map fuzzy ideas and garbled thoughts to crystal-clear and scientifically
sound concepts. John von Neumann drew the insight for the stored-program computer from Alan
Turing’s work9 and from his visit to University of Pennsylvania; he thought that the ENIAC was an
engineering marvel but was less impressed with the awkward manner of “programming” it by manually
connecting cables and setting switches. He introduced the so-called “von Neumann architecture” in a
report published in the 1940s; to this day he is faulted by some because he failed to mention in this
report the sources of his insight.

Von Neumann led the development at the Institute of Advanced Studies at Princeton of the MANIAC,
an acronym for Mathematical and Numerical Integrator and Computer. The MANIAC was closer to
modern computers than any of its predecessors; it was used for sophisticated calculations required by
the development of the hydrogen bomb, nicknamed “Ivy Mike” and secretly detonated on November 1,
1952, over an island that no longer exists in the South Pacific. In a recent book [110] science historian
George Dyson writes: “The history of digital computing can be divided into an Old Testament whose
prophets, led by Leibnitz, supplied the logic, and a New Testament whose prophets led by von Neumann
built the machines. Alan Turing arrived between them.”

Third-generation computers were built during the 1964–1971 period; they made extensive use of
integrated circuits (ICs) and ran under the control of operating systems. MULTIX (Multiplexed Infor-
mation and Computing Service) was an early time-sharing operating system for the GE 645 mainframe,
developed jointly by MIT, GE, and Bell Labs [91]. It had numerous novel features and implemented
a fair number of interesting concepts, such as a hierarchical file system, access control lists for file
information sharing, dynamic linking, and online reconfiguration.

The development of the UNIX system was a consequence of the withdrawal of Bell Labs from the
MULTIX project in 1968. UNIX was developed in 1969 for a DEC PDP minicomputer by a group led
by Kenneth Thompson and Dennis Ritchie [304]. According to [303], “the most important job of UNIX
is to provide a file-system.” The same reference discusses another concept introduced by the system:
“For most users, communication with UNIX is carried on with the aid of a program called the Shell.
The Shell is a command line interpreter: it reads lines typed by the user and interprets them as requests
to execute other programs.”

The first microprocessor, the Intel 4004, announced in 1971, performed binary-coded decimal (BCD)
arithmetic using 4-bit words. It was followed in 1971 by the Intel 8080, the first 8-bit microprocessor,
and by its competitor, Motorola 6800, released in 1974. The first 16-bit multichip microprocessor, the
IMP-16, was announced in 1973 by National Semiconductor. The 32-bit microprocessors appeared in
1979; the widely used Motorola MC68000 had 32-bit registers and supported 24-bit addressing. Intel’s
80286 was introduced in 1982. The 64-bit processor era was inaugurated by the AMD64, an archi-
tecture called x86-64, backward-compatible with Intel x86 architecture. Dual-core processors appeared
in 2005; multicore processors are ubiquitous in today’s servers, PCs, tablets, and even smartphones.

9Alan Turing came to the Institute of Advanced Studies at Princeton in 1936 and got his Ph.D. there in 1938. John von
Neumann offered him a position at the Institute, but as war was approaching in Europe, Turing decided to go back to England.

64 CHAPTER 2 Parallel and Distributed Systems

2.16 Exercises and problems
Problem 1. Nonlinear algorithms do not obey the rules of scaled speed-up. For example, it was shown

that when the concurrency of an O(N 3) algorithm doubles, the problem size increases
only by slightly more than 25%. Read [326] and explain this result.

Problem 2. Given a system of four concurrent threads t1, t2, t3, and t4, we take a snapshot of the
consistent state of the system after 3, 2, 4, and 3 events in each thread, respectively; all but
the second event in each thread are local events. The only communication event in thread
t1 is to send a message to t4 and the only communication event in thread t3 is to send a
message to t2. Draw a space-time diagram showing the consistent cut; mark individual
events on the thread ti as e j

i .
How many messages are exchanged to obtain the snapshot in this case? The snapshot

protocol allows application developers to create a checkpoint. An examination of the
checkpoint data shows that an error has occurred, and it is decided to trace the execution.
How many potential execution paths must be examined to debug the system?

Problem 3. The run time of a data-intensive application could be days or possibly weeks, even on a
powerful supercomputer. Checkpoints are taken periodically for a long-running compu-
tation, and when a crash occurs, the computation is restarted from the latest checkpoint.
This strategy is also useful for program and model debugging; when one observes wrong
partial results, the computation can be restarted from a checkpoint where the partial results
seem to be right.

Express η, the slowdown due to checkpointing, for a computation when checkpoints
are taken after a run lasting τ units of time and each checkpoint requires κ units of time.
Discuss optimal choices for τ and κ .

The checkpoint data can be stored locally, on the secondary storage of each processor,
or on a dedicated storage server accessible via a high-speed network. Which solution is
optimal and why?

Problem 4. What is in your opinion the critical step in the development of a systematic approach to all-
or-nothing atomicity? What does a systematic approach mean? What are the advantages
of a systematic versus an ad hoc approach to atomicity?

The support for atomicity affects the complexity of a system. Explain how the support
for atomicity requires new functions or mechanisms and how these new functions increase
the system complexity. At the same time, atomicity could simplify the description of a
system; discuss how it accomplishes this task.

Support for atomicity is critical for system features that lead to increased performance
and functionality, such as virtual memory, processor virtualization, system calls, and user-
provided exception handlers. Analyze how atomicity is used in each one of these cases.

Problem 5. The Petri net in Figure 2.19(d) models a group of n concurrent processes in a shared-
memory environment. At any given time only one process may write, but any subset of
the n processes may read at the same time, provided that no process writes. Identify the

2.16 Exercises and Problems 65

firing sequences, the markings of the net, the postsets of all transitions, and the presets of
all places. Can you construct a state machine to model the same process?

Problem 6. Explain briefly how the publish/subscribe paradigm works and discuss its application to
services such as bulletin boards, mailing lists, and so on. Outline the design of an event
service based on this paradigm, as in Figure 2.21(b). Can you identify a cloud service that
emulates an event service?

Problem 7. Tuple spaces can be thought of as an implementation of a distributed shared memory.
Tuple spaces have been developed for many programming languages, including Java,
LISP, Python, Prolog, Smalltalk, and TCL. Explain briefly how tuple spaces work. How
secure and scalable are the tuple spaces you are familiar with, such as JavaSpaces?

Problem 8. Consider a computation consisting of n stages with a barrier synchronization among the
N threads at the end of each stage. Assuming that you know the distribution of the random
execution time of each thread for each stage, show how you could use order statistics [99]
to estimate the completion time of the computation.

Problem 9. In Section 3.7 we analyze cloud computing benchmarks and compare them with the results
of the same benchmarks performed on a supercomputer. This is not unexpected; discuss
the reasons that we should expect the poor performance of fine-grain parallel computations
on a cloud.

This page is intentionally left blank

3
CHAPTER

Cloud Infrastructure

In this chapter we give an overview of the cloud computing infrastructure at Amazon, Google, and
Microsoft as of mid-2012. These cloud service providers support one or more of the three cloud comput-
ing delivery models discussed in Section 1.4: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), and Software-as-a-Service (SaaS). Amazon is a pioneer in IaaS, Google’s efforts are focused
on SaaS and PaaS delivery models, and Microsoft is involved in PaaS.

Private clouds are an alternative to public clouds. Open-source cloud computing platforms such as
Eucalyptus [269], OpenNebula, Nimbus, and OpenStack can be used as a control infrastructure for
a private cloud. We continue our discussion of the cloud infrastructure with an overview of service
level agreements (SLAs) and the responsibility sharing between users and cloud service providers,
followed by a brief discussion of software licensing, energy consumption, and ecological impact of
cloud computing. We conclude with a section covering user experiences with current systems.

Several other IT companies are also involved in cloud computing. IBM offers a cloud computing plat-
form, IBMSmartCloud, which includes servers, storage, and virtualization components for building pri-
vate and hybrid cloud computing environments. In October 2012 it was announced that IBM had teamed
up with AT&T to give customers access to IBM’s cloud infrastructure over AT&T’s secure private lines.

In 2011 HP announced plans to enter the cloud computing club. Oracle announced its entry to enter-
prise computing in the early 2012. The Oracle Cloud is based on Java, SQL standards, and software
systems such as Exadata, Exalogic, WebLogic, and Oracle Database. Oracle plans to offer application
and platform services. Some of these services are Fusion HCM (Human Capital Management), Fusion
CRM (Customer Relation Management), and Oracle Social Network; the platform services are based
on Java and SQL.

3.1 Cloud computing at Amazon
Amazon introduced a computing platform that has changed the face of computing in the last decade.
First, it installed a powerful computing infrastructure to sustain its core business, e-commerce, selling
a variety of goods ranging from books and CDs to gourmet foods and home appliances. Then Amazon
discovered that this infrastructure could be further extended to provide affordable and easy-to-use
resources for enterprise computing as well as computing for the masses.

In mid-2000 Amazon introduced Amazon Web Services (AWS), based on the IaaS delivery model.
In this model the cloud service provider offers an infrastructure consisting of compute and storage
servers interconnected by high-speed networks that support a set of services to access these resources.
An application developer is responsible for installing applications on a platform of his or her choice
and managing the resources provided by Amazon.
Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00003-8
© 2013 Elsevier Inc. All rights reserved.

67

68 CHAPTER 3 Cloud Infrastructure

It is reported that in 2012, businesses in 200 countries used the AWS, demonstrating the international
appeal of this computing paradigm. A significant number of large corporations as well as start-ups take
advantage of computing services supported by the AWS infrastructure. For example, one start-up reports
that its monthly computing bills at Amazon are in the range of $100,000, whereas it would spend more
than $2,000,000 to compute using its own infrastructure, without benefit of the speed and flexibility
offered by AWS. The start-up employs 10 engineers rather than the 60 it would need to support its own
computing infrastructure (“Active in cloud, Amazon reshapes computing,” New York Times, August
28, 2012).
Amazon Web Services. Amazon was the first provider of cloud computing; it announced a limited
public beta release of its Elastic Computing platform called EC2 in August 2006. Figure 3.1 shows the
palette of AWS services accessible via the Management Console in late 2011 [13–18].

Elastic Compute Cloud (EC2)1 is a Web service with a simple interface for launching instances of
an application under several operating systems, such as several Linux distributions, Microsoft Windows
Server 2003 and 2008, OpenSolaris, FreeBSD, and NetBSD.

An instance is created either from a predefined Amazon Machine Image (AMI) digitally signed
and stored in S3 or from a user-defined image. The image includes the operating system, the run-time
environment, the libraries, and the application desired by the user. AMI images create an exact copy of
the original image but without configuration-dependent information such as the hostname or the MAC
address. A user can: (i) Launch an instance from an existing AMI and terminate an instance; (ii) start and
stop an instance; (iii) create a new image; (iv) add tags to identify an image; and (v) reboot an instance.

EC2 is based on the Xen virtualization strategy discussed in detail in Section 5.8. In EC2 each virtual
machine or instance functions as a virtual private server. An instance specifies the maximum amount of
resources available to an application, the interface for that instance, and the cost per hour.

A user can interact with EC2 using a set of SOAP messages (see Section 4.3) and can list available
AMI images, boot an instance from an image, terminate an image, display the running instances of a
user, display console output, and so on. The user has root access to each instance in the elastic and
secure computing environment of EC2. The instances can be placed in multiple locations in different
regions and availability zones.

EC2 allows the import of virtual machine images from the user environment to an instance through
a facility called VM import. It also automatically distributes the incoming application traffic among
multiple instances using the elastic load-balancing facility. EC2 associates an elastic IP address with
an account; this mechanism allows a user to mask the failure of an instance and remap a public IP
address to any instance of the account without the need to interact with the software support team.

Simple Storage System (S3) is a storage service designed to store large objects. It supports a minimal
set of functions: write, read, and delete.

S3 allows an application to handle an unlimited number of objects ranging in size from one byte
to five terabytes. An object is stored in a bucket and retrieved via a unique developer-assigned key. A
bucket can be stored in a region selected by the user. S3 maintains the name, modification time, an
access control list, and up to four kilobytes of user-defined metadata for each object. The object names

1Amazon EC2 was developed by a team led by C. Pinkham, including C. Brown, Q. Hoole, R. Paterson-Jones, and W. Van
Biljon, all from Cape Town, South Africa.

3.1 Cloud Computing at Amazon 69

Auto Scaling

CloudWatch

S3

EBS

Simple DB

EC2

Linux, Debian,
Fedora,OpenSolaris,
Open Suse, Red Hat,

Ubuntu, Windows, Suse
Linux

SQS -Simple Queue Service

AWS Management Console

EC2

Linux, Debian,
Fedora,OpenSolaris,
Open Suse, Red Hat,

Ubuntu, Windows, Suse
Linux

Virtual Private Cloud

FIGURE 3.1

Services offered by AWS are accessible from the AWS Management Console. Applications running under a
variety of operating systems can be launched using EC2. Multiple EC2 instances can communicate using
SQS. Several storage services are available: S3, Simple DB, and EBS. The Cloud Watch supports performance
monitoring; the Auto Scaling supports elastic resource management. The Virtual Private Cloud allows direct
migration of parallel applications.

are global. Authentication mechanisms ensure that data is kept secure; objects can be made public, and
rights can be granted to other users.

S3 supports PUT, GET, and DELETE primitives to manipulate objects but does not support primitives
to copy, rename, or move an object from one bucket to another. Appending to an object requires a read
followed by a write of the entire object.

70 CHAPTER 3 Cloud Infrastructure

S3 computes the MD52 of every object written and returns it in a field called ETag. A user is expected
to compute the MD5 of an object stored or written and compare this with the ETag; if the two values
do not match, then the object was corrupted during transmission or storage.

The Amazon S3 SLA guarantees reliability. S3 uses standards-based REST and SOAP interfaces (see
Section 4.3); the default download protocol is HTTP, but BitTorrent3 protocol interface is also provided
to lower costs for high-scale distribution.

Elastic Block Store (EBS) provides persistent block-level storage volumes for use with Amazon EC2
instances. A volume appears to an application as a raw, unformatted, and reliable physical disk; the size
of the storage volumes ranges from one gigabyte to one terabyte. The volumes are grouped together in
availability zones and are automatically replicated in each zone. An EC2 instance may mount multiple
volumes, but a volume cannot be shared among multiple instances. The EBS supports the creation of
snapshots of the volumes attached to an instance and then uses them to restart an instance. The storage
strategy provided by EBS is suitable for database applications, file systems, and applications using raw
data devices.

Simple DB is a nonrelational data store that allows developers to store and query data items via
Web services requests. It supports store-and-query functions traditionally provided only by relational
databases. Simple DB creates multiple geographically distributed copies of each data item and supports
high-performance Web applications; at the same time, it automatically manages infrastructure provision-
ing, hardware and software maintenance, replication and indexing of data items, and performance tuning.

Simple Queue Service (SQS) is a hosted message queue. SQS is a system for supporting automated
workflows; it allows multiple Amazon EC2 instances to coordinate their activities by sending and
receiving SQS messages. Any computer connected to the Internet can add or read messages without
any installed software or special firewall configurations.

Applications using SQS can run independently and asynchronously and do not need to be developed
with the same technologies. A received message is “locked” during processing; if processing fails, the
lock expires and the message is available again. The time-out for locking can be changed dynamically
via the ChangeMessageVisibility operation. Developers can access SQS through standards-based SOAP
and Query interfaces. Queues can be shared with other AWS accounts and anonymously; queue sharing
can also be restricted by IP address and time-of-day. An example showing the use of message queues
is presented in Section 4.7.

CloudWatch is a monitoring infrastructure used by application developers, users, and system admin-
istrators to collect and track metrics important for optimizing the performance of applications and
for increasing the efficiency of resource utilization. Without installing any software, a user can monitor
approximately a dozen preselected metrics and then view graphs and statistics for these
metrics.

When launching an Amazon Machine Image (AMI), a user can start the CloudWatch and specify the
type of monitoring. Basic Monitoring is free of charge and collects data at five-minute intervals for up

2MD5 (Message-Digest Algorithm) is a widely used cryptographic hash function; it produces a 128-bit hash value. It is used
for checksums. SHA-i (Secure Hash Algorithm, 0 � i � 3) is a family of cryptographic hash functions; SHA-1 is a 160-bit
hash function that resembles MD5.
3BitTorrent is a peer-to-peer (P2P) communications protocol for file sharing.

3.1 Cloud Computing at Amazon 71

to 10 metrics; Detailed Monitoring is subject to a charge and collects data at one-minute intervals. This
service can also be used to monitor the latency of access to EBS volumes, the available storage space for
RDS DB instances, the number of messages in SQS, and other parameters of interest for applications.

Virtual Private Cloud (VPC) provides a bridge between the existing IT infrastructure of an organiza-
tion and the AWS cloud. The existing infrastructure is connected via a virtual private network (VPN) to
a set of isolated AWS compute resources. VPC allows existing management capabilities such as security
services, firewalls, and intrusion detection systems to operate seamlessly within the cloud.

Auto Scaling exploits cloud elasticity and provides automatic scaling of EC2 instances. The service
supports grouping of instances, monitoring of the instances in a group, and defining triggers and pairs of
CloudWatch alarms and policies, which allow the size of the group to be scaled up or down. Typically,
a maximum, a minimum, and a regular size for the group are specified.

An Auto Scaling group consists of a set of instances described in a static fashion by launch configura-
tions. When the group scales up, new instances are started using the parameters for the runInstances
EC2 call provided by the launch configuration. When the group scales down, the instances with older
launch configurations are terminated first. The monitoring function of the Auto Scaling service carries
out health checks to enforce the specified policies; for example, a user may specify a health check for
elastic load balancing and then Auto Scaling will terminate an instance exhibiting a low performance
and start a new one. Triggers use CloudWatch alarms to detect events and then initiate specific actions;
for example, a trigger could detect when the CPU utilization of the instances in the group goes above
90% and then scale up the group by starting new instances. Typically, triggers to scale up and down are
specified for a group.

Several new AWS services were introduced in 2012; some of them are in a beta stage at the time of
this writing. Among the new services we note: Route 53, a low-latency DNS service used to manage
user’s DNS public records; Elastic MapReduce (EMR), a service supporting processing of large amounts
of data using a hosted Hadoop running on EC2 and based on the MapReduce paradigm discussed in
Section 4.6; Simple Workflow Service (SWF), which supports workflow management (see Section 4.4)
and allows scheduling, management of dependencies, and coordination of multiple EC2 instances;
ElastiCache, a service enabling Web applications to retrieve data from a managed in-memory caching
system rather than a much slower disk-based database; DynamoDB, a scalable and low-latency fully
managed NoSQL database service; CloudFront, a Web service for content delivery; and Elastic Load
Balancer, a cloud service to automatically distribute the incoming requests across multiple instances of
the application. Two new services, the Elastic Beanstalk and the CloudFormation, are discussed next.

Elastic Beanstalk, a service that interacts with other AWS services, including EC2, S3, SNS, Elastic
Load Balance, and Auto Scaling, automatically handles the deployment, capacity provisioning, load
balancing, Auto Scaling, and application monitoring functions [356]. The service automatically scales
the resources as required by the application, either up, or down based on default Auto Scaling settings.
Some of the management functions provided by the service are: (i) deployment of a new application
version (or rollback to a previous version); (ii) access to the results reported by CloudWatch monitoring
service; (iii) email notifications when application status changes or application servers are added or
removed; and (iv) access to server login files without needing to login to the application servers.

The Elastic Beanstalk service is available to developers using a Java platform, the PHP server-side
description language, or .NET framework. For example, a Java developer can create the application

72 CHAPTER 3 Cloud Infrastructure

using any Integrated Development Environment (IDE) such as Eclipse and package the code into a Java
Web Application Archive (a file of type “.war”) file. The “.war” file should then be uploaded to the
Elastic Beanstalk using the Management Console and then deployed, and in a short time the application
will be accessible via a URL.

CloudFormation allows the creation of a stack describing the infrastructure for an application. The
user creates a template, a text file formatted as in Javascript Object Notation (JSON), describing the
resources, the configuration values, and the interconnection among these resources. The template can
be parameterized to allow customization at run time, (e.g., to specify the types of instances, database
port numbers, or RDS size). A template for the creation of an EC2 instance follows:

{

"Description" : "Create instance running Ubuntu Server 12.04 LTS

64 bit AMI

"Parameters" : {

"KeyPair" : {

"Description" : "Key Pair to allow SSH access to the instance",

"Type" : "String"

}

},
"Resources" : {

"Ec2Instance" : {

"Type" : "AWS::EC2::Instance",

"Properties" : {

"KeyName" : {"Ref" : "KeyPair"},

"ImageId" : "aki-004ec330"

}

}

},
"Outputs" : {

"InstanceId" : {

"Description" : "The InstanceId of the newly created

instance",

"Value" : { "Ref" : "Ec2InstDCM"}

}

},
"AWSTemplateFormatVersion" : "2012-03-09"

}

The Amazon Web Services Licensing Agreement (AWSLA) allows the cloud service provider to
terminate service to any customer at any time for any reason and contains a covenant not to sue Amazon
or its affiliates for any damages that might arise out of the use of AWS. As noted in [133], the AWSLA
prohibits the use of “other information obtained through AWS for the purpose of direct marketing,
spamming, contacting sellers or customers.” It prohibits AWS from being used to store any content

3.1 Cloud Computing at Amazon 73

Table 3.1 Amazon data centers are located in several regions; in each region there are multiple
availability zones. The billing rates differ from one region to another and can be roughly grouped
into four categories: low, medium, high, and very high.

Region Location Availability Zones Cost

US West Oregon us-west-2a/2b/2c Low
US West North California us-west-1a/1b/1c High
US East North Virginia us-east-1a/2a/3a/4a Low
Europe Ireland eu-west-1a/1b/1c Medium
South America Sao Paulo, Brazil sa-east-1a/1b Very high
Asia/Pacific Tokyo, Japan ap-northeast-1a/1b High
Asia/Pacific Singapore ap-southeast-1a/1b Medium

that is “obscene, libelous, defamatory or otherwise malicious or harmful to any person or entity.” It
also prohibits S3 from being used “in any way that is otherwise illegal or promotes illegal activities,
including without limitation in any manner that might be discriminatory based on race, sex, religion,
nationality, disability, sexual orientation, or age.”

Users have several choices for interacting with and managing AWS resources from either a Web
browser or from a system running Linux or Microsoft Windows:

1. The AWS Web Management Console, available at http://aws.amazon.com/console/; this is the
easiest way to access all services, but not all options may be available in this mode.

2. Command-line tools; see http://aws.amazon.com/developertools.
3. AWS SDK libraries and toolkits provided for several programming languages, including Java, PHP,4

C#, and Obj C.
4. Raw REST requests (see Section 4.3 for a discussion of architectural styles for cloud applications).

Regions and Availability Zones. Today Amazon offers cloud services through a network of data
centers on several continents, (see Table 3.15). In each region there are several availability zones
interconnected by high-speed networks; regions communicate through the Internet and do not share
resources.

An availability zone is a data center consisting of a large number of servers. A server may run multiple
virtual machines or instances, started by one or more users; an instance may use storage services, S3,
EBS), and Simple DB, as well as other services provided by AWS (see Figure 3.2). A cloud interconnect
allows all systems in an availability zone to communicate with one another and with systems in other
availability zones of the same region.

Storage is automatically replicated within a region; S3 buckets are replicated within an availability
zone and between the availability zones of a region, whereas EBS volumes are replicated only within the

4PHP evolved from a set of Perl scripts designed to produce dynamic Web pages called Personal Home Page Tools into a
general-purpose server-side scripting language. The code embedded into an HTML source document is interpreted by a Web
server with a PHP processor module, which generates the resulting Web page.
5In November 2012 Amazon announced a new region, Asia Pacific-Sydney.

74 CHAPTER 3 Cloud Infrastructure

Internet
Cloud interconnect

AWS storage servers

S3

EBS

Simple DB

Compute server

EC2 instanceCompute server

EC2
instance

Compute server

InstanceEC2
instance

Servers running AWS
services

SQS

Cloud Watch

AWS Management
Console

Elastic Beanstalk

Cloud Front

Elastic cache

Elastic Load Balancer

Cloud formation

NAT

FIGURE 3.2

The configuration of an availability zone supporting AWS services. A cloud interconnect supports high-speed
communication among compute and storage servers in the zone. It also supports communication with servers
in other availablity zones and with cloud users via a Network Address Translation (NAT). NAT maps external
IP addresses to internal ones. Multitenancy increases server utilization and lowers costs.

same availability zone. Critical applications are advised to replicate important information in multiple
regions to be able to function when the servers in one region are unavailable due to catastrophic events.

A user can request virtual servers and storage located in one of the regions. The user can also request
virtual servers in one of the availability zones of that region. The Elastic Compute Cloud (EC2) service
allows a user to interact and to manage the virtual servers.

The billing rates in each region are determined by the components of the operating costs, including
energy, communication, and maintenance costs. Thus, the choice of the region is motivated by the desire
to minimize costs, reduce communication latency, and increase reliability and security.

3.1 Cloud Computing at Amazon 75

An instance is a virtual server. The user chooses the region and the availability zone where this virtual
server should be placed and selects from a limited menu of instance types: the one that provides the
resources, CPU cycles, main memory, secondary storage, communication, and I/O bandwidth needed
by the application.

When launched, an instance is provided with a DNS name. This name maps to a private IP address
for internal communication within the internal EC2 communication network and a public IP address
for communication outside the internal Amazon network, (e.g., for communication with the user that
launched the instance). Network Address Translation (NAT) maps external IP addresses to internal ones.

The public IP address is assigned for the lifetime of an instance and it is returned to the pool of
available public IP addresses when the instance is either stopped or terminated. An instance can request
an elastic IP address, rather than a public IP address. The elastic IP address is a static public IP address
allocated to an instance from the available pool of the availability zone. An elastic IP address is not
released when the instance is stopped or terminated and must be released when no longer needed.

The Charges for Amazon Web Services. Amazon charges a fee for EC2 instances, EBS storage,
data transfer, and several other services. The charges differ from one region to another and depend on
the pricing model; see http://aws.amazon.com/ec2/pricing for the current pricing structure.

There are three pricing models for EC2 instances: on-demand, reserved, and spot. On-demand
instances use a flat hourly rate, and the user is charged for the time an instance is running; no reservation
is required for this most popular model. For reserved instances a user pays a one-time fee to lock in a
typically lower hourly rate. This model is advantageous when a user anticipates that the application will
require a substantial number of CPU cycles and this amount is known in advance. Additional capacity
is available at the larger standard rate. In case of spot instances, users bid on unused capacity and their
instances are launched when the market price reaches a threshold specified by the user.

The EC2 system offers several instance types:

• Standard instances. Micro (StdM), small (StdS), large (StdL), extra large (StdXL); small is the
default.

• High memory instances. High-memory extra-large (HmXL), high-memory double extra-large
(Hm2XL), and high-memory quadruple extra-large (Hm4XL).

• High CPU instances. High-CPU extra-large (HcpuXL).
• Cluster computing. Cluster computing quadruple extra-large (Cl4XL).

Table 3.2 summarizes the features and the amount of resources supported by each instance. The
resources supported by each configuration are main memory, virtual computers (VCs) with a 32- or 64-bit
architecture, instance memory (I-memory) on persistent storage, and I/O performance at two levels: mod-
erate (M) or high (H). The computing power of a virtual core is measured in EC2 compute units (CUs).

A main attraction of Amazon cloud computing is the low cost. The dollar amounts charged for one
hour of running Amazon’s services under Linux or Unix and Microsoft Windows in mid-2012 are sum-
marized in Table 3.3. There are no charges for data transfers from the user’s site to the Amazon network
or within the Amazon network; the charges for data transfer from the AWS network to the outside world
depend on the region. For example, the charges for the US West (Oregon) region are shown in Table 3.4.

An Evaluation of Amazon Web Services. In 2007 Garfinkel reported the results of an early eval-
uation of Amazon Web Services [133]. The paper reports that EC2 instances are fast, responsive, and

76 CHAPTER 3 Cloud Infrastructure

Table 3.2 The nine instances supported by EC2. The cluster computing Cl4XL (quadruple extra-
large) instance uses two Intel Xeon X5570, Quad-Core Nehalem Architecture processors. The
instance memory (I-memory) refers to persistent storage; the I/O performance can be moderate
(M) or high (H).

Instance API Platform Memory Max EC2 I-Memory I/O

Name Name (32/64-bit) (GB) Compute Units (GB) (M/H)

StdM 32 and 64 0.633 1 VC; 2 CUs
StdS m1.small 32 1.7 1 VC; 1 CU 160 M
StdL m1.large 64 7.5 2 VCs; 2 × 2 CUs 85 H
StdXL m1.xlarge 64 15 4 VCs; 4 × 2 CUs 1,690 H
HmXL m2.xlarge 64 17.1 2 VCs; 2 × 3.25 CUs 420 M
Hm2XL m2.2xlarge 64 34.2 4 VCs; 4 × 3.25 CUs 850 H
Hm4XL m2.4xlarge 64 68.4 8 VCs; 8 × 3.25 CUs 1,690 H
HcpuXL c1.xlarge 64 7 8 VCs; 8 × 2.5 CUs 1,690 H
Cl4XL cc1.4xlarge 64 18 33.5 CUs 1,690 H

Table 3.3 The charges in dollars for one hour of Amazon’s cloud services running under Linux
or Unix and under Microsoft Windows for several EC2 instances.
Instance Linux/Unix Windows

StdM 0.007 0.013
StdS 0.03 0.048
StdL 0.124 0.208
StdXL 0.249 0.381
HmXL 0.175 0.231
Hm2XL 0.4 0.575
Hm4XL 0.799 1.1
HcpuXL 0.246 0.516
Cl4XL 0.544 N/A

Table 3.4 Monthly charges in dollars for data transfer out of the US West (Oregon) region.

Amount of Data Charge $

First 1 GB 0.00
Up to 10 TB 0.12
Next 40 TB 0.09
Next 100 TB 0.07
Next 350 TB 0.05

3.2 Cloud Computing: The Google Perspective 77

very reliable; a new instance could be started in less than two minutes. During the year of testing, one
unscheduled reboot and one instance freeze were experienced. No data was lost during the reboot, but
no data could be recovered from the virtual disks of the frozen instance.

To test the S3 service, a bucket was created and loaded with objects in sizes of 1 byte, 1 KB, 1 MB,
16 MB, and 100 MB. The measured throughput for the 1-byte objects reflected the transaction speed
of S3 because the testing program required that each transaction be successfully resolved before the
next was initiated. The measurements showed that a user could execute at most 50 non-overlapping
S3 transactions. The 100 MB probes measured the maximum data throughput that the S3 system could
deliver to a single client thread. From the measurements, the author concluded that the data throughput
for large objects was considerably larger than for small objects due to a high transaction overhead. The
write bandwidth for 1 MB data was roughly 5 MB/s, whereas the read bandwidth was five times lower
at 1 MB/s.

Another test was designed to see if concurrent requests could improve the throughput of S3. The
experiment involved two virtual machines running on two different clusters and accessing the same
bucket with repeated 100 MB GET and PUT operations. The virtual machines were coordinated, with
each one executing one to six threads for 10 min and then repeating the pattern for 11 h. As the number
of threads increased from one to six, the bandwidth received by each thread was roughly cut in half and
the aggregate bandwidth of the six threads was 30 MB/s, about three times the aggregate bandwidth of
one thread. In 107,556 tests of EC2, each one consisting of multiple read and write probes, only six
write retries, three write errors, and four read retries were encountered.

3.2 Cloud computing: the Google perspective
Google’s effort is concentrated in the area of Software-as-a-Service (SaaS). It is estimated that the
number of servers used by Google was close to 1.8 million in January 2012 and was expected to reach
close to 2.4 million in early 2013 [289].

Services such as Gmail, Google Drive, Google Calendar, Picasa, and Google Groups are free of
charge for individual users and available for a fee for organizations. These services are running on a cloud
and can be invoked from a broad spectrum of devices, including mobile ones such as iPhones, iPads,
Black-Berrys, and laptops and tablets. The data for these services is stored in data centers on the cloud.

The Gmail service hosts emails on Google servers and, provides a Web interface to access them and
tools for migrating from Lotus Notes and Microsoft Exchange. Google Docs is Web-based software
for building text documents, spreadsheets, and presentations. It supports features such as tables, bullet
points, basic fonts, and text size; it allows multiple users to edit and update the same document and view
the history of document changes; and it provides a spell checker. The service allows users to import and
export files in several formats, including Microsoft Office, PDF, text, and OpenOffice extensions.

Google Calendar is a browser-based scheduler; it supports multiple calendars for a user, the ability
to share a calendar with other users, the display of daily/weekly/monthly views, and the ability to search
events and synchronize with the Outlook Calendar. Google Calendar is accessible from mobile devices.
Event reminders can be received via SMS, desktop popups, or emails. It is also possible to share your
calendar with other Google Calendar users. Picasa is a tool to upload, share, and edit images; it provides
1 GB of disk space per user free of charge. Users can add tags to images and attach locations to photos

78 CHAPTER 3 Cloud Infrastructure

using Google Maps. Google Groups allows users to host discussion forums to create messages online
or via email.

Google is also a leader in the Platform-as-a-Service (PaaS) space. AppEngine is a developer platform
hosted on the cloud. Initially it supported only Python, but support for Java was added later and detailed
documentation for Java is available. The database for code development can be accessed with Google
Query Language (GQL) with a SQL-like syntax.

The concept of structured data is important to Google’s service strategy. The change of search
philosophy reflects the transition from unstructured Web content to structured data, data that contains
additional information, such as the place where a photograph was taken, information about the singer
of a digital recording of a song, the local services at a geographic location, and so on [227].

Search engine crawlers rely on hyperlinks to discover new content. The deep Web is content stored
in databases and served as pages created dynamically by querying HTML forms. Such content is
unavailable to crawlers that are unable to fill out such forms. Examples of deep Web sources are sites
with geographic-specific information, such as local stores, services, and businesses; sites that report
statistics and analysis produced by governmental and nongovernmental organizations; art collections;
photo galleries; bus, train, and airline schedules; and so on. Structured content is created by labeling;
Flickr and Google Co-op are examples of structures where labels and annotations are added to objects,
images, and pages stored on the Web.

Google Co-op allows users to create customized search engines based on a set of facets or cate-
gories. For example, the facets for a search engine for the database research community available at
http://data.cs.washington.edu/coop/dbresearch/index.html are professor, project,
publication, jobs.

Google Base is a service allowing users to load structured data from different sources to a cen-
tral repository that is a very large, self-describing, semi-structured, heterogeneous database. It is self-
describing because each item follows a simple schema: (item type, attribute names). Few users are
aware of this service. Google Base is accessed in response to keyword queries posed on Google.com,
provided that there is relevant data in the database. To fully integrate Google Base, the results should
be ranked across properties. In addition, the service needs to propose appropriate refinements with
candidate values in select menus; this is done by computing histograms on attributes and their values
during query time.

Google Drive is an online service for data storage that has been available since April 2012. It gives
users 5 GB of free storage and charges $4 per month for 20 GB. It is available for PCs, MacBooks,
iPhones, iPads, and Android devices and allows organizations to purchase up to 16 TB of storage.

Specialized structure-aware search engines for several interest areas, including travel, weather, and
local services, have already been implemented. However, the data available on the Web covers a wealth
of human knowledge; it is not feasible to define all the possible domains and it is nearly impossible to
decide where one domain ends and another begins.

Google has also redefined the laptop with the introduction of the Chromebook, a purely Web-centric
device running Chrome OS. Cloud-based applications, extreme portability, built-in 3G connectivity,
almost instant-on, and all-day battery life are the main attractions of this device with a keyboard.

Google adheres to a bottom-up, engineer-driven, liberal licensing and user application development
philosophy, whereas Apple, a recent entry in cloud computing, tightly controls the technology stack,

3.3 Microsoft Windows Azure and Online Services 79

builds its own hardware, and requires application developers to follow strict rules. Apple products,
including the iPhone, the iOS, the iTunes Store, Mac OS X, and iCloud, offer unparalleled polish and
effortless interoperability, but the flexibility of Google results in more cumbersome user interfaces for
the broad spectrum of devices running the Android OS.

Google as well as the other cloud service providers must manage vast amounts of data. In a world
where users would most likely desire to use multiple cloud services from independent providers, the
question of whether the traditional data base management services (DBMSs) are sufficient to ensure
interoperability comes to mind. A DBMS efficiently supports data manipulations and query processing
but operates in a single administrative domain and uses well-defined schema. The interoperability of data
management services requires semantic integration of services based on different schemas. An answer
to the limitations of traditional DBMS is the so-called dataspaces introduced in [127]; dataspaces do
not aim at data integration but rather at data coexistence.

3.3 Microsoft Windows Azure and online services
Azure and Online Services are, respectively, PaaS and SaaS cloud platforms from Microsoft. Windows
Azure is an operating system, SQL Azure is a cloud-based version of the SQL Server, and Azure AppFabric
(formerly .NET Services) is a collection of services for cloud applications.

Windows Azure has three core components (see Figure 3.3): Compute, which provides a computation
environment; Storage for scalable storage; and Fabric Controller, which deploys, manages, and mon-
itors applications; it interconnects nodes consisting of servers, high-speed connections, and switches.

CDN

Storage

Blobs Tables Queues

Applications and Data

Compute

Fabric Controller

Connect

FIGURE 3.3

The components of Windows Azure: Compute, which runs cloud applications; Storage, which uses blobs,
tables, and queues to store data; Fabric Controller, which deploys, manages, and monitors applications;
CDN, which maintains cache copies of data; and Connect, which allows IP connections between the user
systems and applications running on Windows Azure.

80 CHAPTER 3 Cloud Infrastructure

The Content Delivery Network (CDN) maintains cache copies of data to speed up computations. The
Connect subsystem supports IP connections between the users and their applications running on Win-
dows Azure. The API interface to Windows Azure is built on REST, HTTP, and XML. The platform
includes five services: Live Services, SQL Azure, AppFabric, SharePoint, and Dynamics CRM. A client
library and tools are also provided for developing cloud applications in Visual Studio.

The computations carried out by an application are implemented as one or more roles; an application
typically runs multiple instances of a role. We can distinguish (i) Web role instances used to create Web
applications; (ii) Worker role instances used to run Windows-based code; and (iii) VM role instances
that run a user-provided Windows Server 2008 R2 image.

Scaling, load balancing, memory management, and reliability are ensured by a fabric controller,
a distributed application replicated across a group of machines that owns all of the resources in its
environment – computers, switches, load balancers – and it is aware of every Windows Azure application.
The fabric controller decides where new applications should run; it chooses the physical servers to
optimize utilization using configuration information uploaded with each Windows Azure application.
The configuration information is an XML-based description of how many Web role instances, how
many Worker role instances, and what other resources the application needs. The fabric controller uses
this configuration file to determine how many VMs to create.

Blobs, tables, queues, and drives are used as scalable storage. A blob contains binary data; a container
consists of one or more blobs. Blobs can be up to a terabyte and they may have associated metadata
(e.g., the information about where a JPEG photograph was taken). Blobs allow a Windows Azure role
instance to interact with persistent storage as though it were a local NTFS6 file system. Queues enable
Web role instances to communicate asynchronously with Worker role instances.

The Microsoft Azure platform currently does not provide or support any distributed parallel com-
puting frameworks, such as MapReduce, Dryad, or MPI, other than the support for implementing basic
queue-based job scheduling [148].

3.4 Open-source software platforms for private clouds
Private clouds provide a cost-effective alternative for very large organizations. A private cloud has
essentially the same structural components as a commercial one: the servers, the network, virtual
machines monitors (VMMs) running on individual systems, an archive containing disk images of virtual
machines (VMs), a front end for communication with the user, and a cloud control infrastructure. Open-
source cloud computing platforms such as Eucalyptus [269], OpenNebula, and Nimbus can be used as
a control infrastructure for a private cloud.

Schematically, a cloud infrastructure carries out the following steps to run an application:

• Retrieves the user input from the front end.
• Retrieves the disk image of a VM from a repository.
• Locates a system and requests the VMM running on that system to set up a VM.

6New Technology File System (NTFS) is the standard file system of the Microsoft Windows operating system starting with
Windows NT 3.1, Windows 2000, and Windows XP.

3.4 Open-Source Software Platforms for Private Clouds 81

FIGURE 3.4

Eucalyptus supports several distributions and is well-documented software for private clouds.

• Invokes the DHCP7 and the IP bridging software to set up a MAC and IP address for the VM.

We discuss briefly the three open-source software systems, Eucalyptus, OpenNebula, and Nimbus.

Eucalyptus (www.eucalyptus.com) can be regarded as an open-source counterpart of Amazon’s EC2,
(see Figure 3.4). The systems supports several operating systems including CentOS 5 and 6, RHEL 5
and 6, Ubuntu 10.04 LTS, and 12.04 LTS.

The components of the system are:

7The Dynamic Host Configuration Protocol (DHCP) is an automatic configuration protocol; it assigns an IP address to a
client system. A DHCP server has three methods of allocating IP addresses. (1) Dynamic allocation: A network administrator
assigns a range of IP addresses to DHCP, and each client computer on the LAN is configured to request an IP address from
the DHCP server during network initialization. The request-and-grant process uses a lease concept with a controllable time
period, allowing the DHCP server to reclaim (and then reallocate) IP addresses that are not renewed. (2) Automatic allocation:
The DHCP server permanently assigns a free IP address to a client from the range defined by the administrator. (3) Static
allocation: The DHCP server allocates an IP address based on a table with MAC address/IP address pairs, which are manually
filled in; only clients with a MAC address listed in this table will be allocated an IP address.

82 CHAPTER 3 Cloud Infrastructure

• Virtual machine. Runs under several VMMs, including Xen, KVM, and Vmware.
• Node controller. Runs on every server or node designated to host a VM and controls the activities

of the node. Reports to a cluster controller.
• Cluster controller. Controls a number of servers. Interacts with the node controller on each server

to schedule requests on that node. Cluster controllers are managed by the cloud controller.
• Cloud controller. Provides the cloud access to end users, developers, and administrators. It is accessi-

ble through command-line tools compatible with EC2 and through a Web-based Dashboard. Manages
cloud resources, makes high-level scheduling decisions, and interacts with cluster controllers.

• Storage controller. Provides persistent virtual hard drives to applications. It is the correspondent
of EBS. Users can create snapshots from EBS volumes. Snapshots are stored in Walrus and made
available across availability zones.

• Storage service (Walrus). Provides persistent storage and, similarly to S3, allows users to store
objects in buckets.

The system supports a strong separation between the user space and the administrator space; users
access the system via a Web interface, whereas administrators need root access. The system supports
a decentralized resource management of multiple clusters with multiple cluster controllers, but a sin-
gle head node for handling user interfaces. It implements a distributed storage system, the analog of
Amazon’s S3 system, called Walrus. The procedure to construct a virtual machine is based on the generic
one described in [323]:

• The euca2ools front end is used to request a VM.
• The VM disk image is transferred to a compute node.
• This disk image is modified for use by the VMM on the compute node.
• The compute node sets up network bridging to provide a virtual network interface controller (NIC)8

with a virtual Media Access Control (MAC) address.9

• In the head node the DHCP is set up with the MAC/IP pair.
• VMM activates the VM.
• The user can now ssh10 directly into the VM.

The system can support a large number of users in a corporate enterprise environment. Users are
shielded from the complexity of disk configurations and can choose their VM from a set of five config-
urations for available processors, memory, and hard drive space set up by the system administrators.

Open-Nebula (www.opennebula.org) is a private cloud with users actually logging into the head node
to access cloud functions. The system is centralized and its default configuration uses NFS (Network
File System). The procedure to construct a virtual machine consists of several steps: (i) the user signs
into the head node using ssh; (ii) the system uses the onevm command to request a VM; (iii) the VM

8An NIC is the hardware component connecting a computer to a LAN. It is also known as a network interface card, network
adapter, or LAN adapter.
9A MAC address is a unique identifier permanently assigned to a network interface by the manufacturer.

10Secure Shell (ssh) is a network protocol that allows data to be exchanged using a secure channel between two networked
devices.ssh uses public-key cryptography to authenticate the remote computer and allow the remote computer to authenticate
the user. It also allows remote control of a device.

3.4 Open-Source Software Platforms for Private Clouds 83

Table 3.5 A side-by-side comparison of Eucalyptus, OpenNebula, and Nimbus.

Eucalyptus OpenNebula Nimbus

Design Emulate EC2 Customizable Based on Globus
Cloud type Private Private Public/Private
User population Large Small Large
Applications All All Scientific
Customizability Administrators and Administrators All but image

limited users and users storage and credentials
Internal security Strict Loose Strict
User access User credentials User credentials x509 credentials
Network access To cluster controller — To each compute node

template disk image is transformed to fit the correct size and configuration within the NFS directory
on the head node; (iv) the oned daemon on the head node uses ssh to log into a compute node; (v) the
compute node sets up network bridging to provide a virtual NIC with a virtual MAC; (vi) the files
needed by the VMM are transferred to the compute node via the NFS; (vii) the VMM on the compute
node starts the VM; and (viii) the user is able to ssh directly to the VM on the compute node.

According to the analysis in [323], the system is best suited for an operation involving a small-to
medium-sized group of trusted and knowledgeable users who are able to configure this versatile system
based on their needs.

Nimbus (www.nimbusproject.org) is a cloud solution for scientific applications based on the Globus
software. The system inherits from Globus the image storage, the credentials for user authentication,
and the requirement that a running Nimbus process can ssh into all compute nodes. Customization in
this system can only be done by the system administrators.

Table 3.5 summarizes the features of the three systems [323]. The conclusions of the comparative
analysis are as follows: Eucalyptus is best suited for a large corporation with its own private cloud
because it ensures a degree of protection from user malice and mistakes. OpenNebula is best suited
for a testing environment with a few servers. Nimbus is more adequate for a scientific community less
interested in the technical internals of the system than with broad customization requirements.

OpenStack is an open-source project started in 2009 at the National Aeronautics and Space Adminis-
tration (NASA) in collaboration with Rackspace (www.rackspace.com) to develop a scalable cloud
operating system for farms of servers using standard hardware. Though recently NASA has moved its
cloud infrastructure to AWS in addition to Rackspace, several other companies, including HP, Cisco,
IBM, and Red Hat, have an interest in OpenStack. The current version of the system supports a wide
range of features such as application programming interfaces (APIs) with rate limiting and authentica-
tion; live VM management to run, reboot, suspend, and terminate instances; role-based access control;
and the ability to allocate, track, and limit resource utilization. The administrators and the users control
their resources using an extensible Web application called the Dashboard.

84 CHAPTER 3 Cloud Infrastructure

3.5 Cloud storage diversity and vendor lock-in
There are several risks involved when a large organization relies solely on a single cloud provider. As
the short history of cloud computing shows, cloud services may be unavailable for a short or even an
extended period of time. Such an interruption of service is likely to negatively impact the organization
and possibly diminish or cancel completely the benefits of utility computing for that organization.
The potential for permanent data loss in case of a catastrophic system failure poses an equally great
danger.

Last but not least, a Cloud Service Provider (CSP) may decide to increase the prices for service and
charge more for computing cycles, memory, storage space, and network bandwidth than other CSPs.
The alternative in this case is switching to another provider. Unfortunately, this solution could be very
costly due to the large volume of data to be transferred from the old to the new provider. Transferring
terabytes or possibly petabytes of data over the network takes a fairly long time and incurs substantial
charges for the network bandwidth.

This chapter discusses the storage models supported by the cloud infrastructure provided by Amazon,
Google, and Microsoft; Chapter 8 covers the architecture of storage systems in general. Reliability is
a major concern, and here we discuss a solution that addresses both avoidance of vendor lock-in and
storage reliability.

A solution to guarding against the problems posed by the vendor lock-in is to replicate the data to
multiple cloud service providers. Straightforward replication is very costly and, at the same time, poses
technical challenges. The overhead to maintain data consistency could drastically affect the performance
of the virtual storage system consisting of multiple full replicas of the organization’s data spread over
multiple vendors. Another solution could be based on an extension of the design principle of a RAID-5
system used for reliable data storage.

A RAID-5 system uses block-level stripping with distributed parity over a disk array, as shown in
Figure 3.5(a); the disk controller distributes the sequential blocks of data to the physical disks and
computes a parity block by bit-wise XOR-ing of the data blocks. The parity block is written on a different
disk for each file to avoid the bottleneck possible when all parity blocks are written to a dedicated disk,
as is done in the case of RAID-4 systems. This technique allows us to recover the data after a single
disk loss. For example, if Disk 2 in Figure 3.5 is lost, we still have all the blocks of the third file, c1,
c2, and c3, and we can recover the missing blocks for the others as follows:

a2 = (a1) XOR (a P) XOR (a3)

b2 = (b1) XOR (bP) XOR (b3)

d1 = (d P) XOR (d2) XOR (d3)

. (39)

Obviously, we can also detect and correct errors in a single block using the same procedure. The
RAID controller also allows parallel access to data (for example, the blocks a1, a2, and a3 can be read
and written concurrently) and it can aggregate multiple write operations to improve performance.

The system in Figure 3.5(b) strips the data across four clusters. The access to data is controlled
by a proxy that carries out some of the functions of a RAID controller, as well as authentication and
other security-related functions. The proxy ensures before-and-after atomicity as well as all-or-nothing
atomicity for data access; the proxy buffers the data, possibly converts the data manipulation commands,

3.5 Cloud Storage Diversity and Vendor Lock-in 85

d1

d3

a1 a2 a3

b2

dP

c1

b1

d2 d3

c3

b3

c2

d1

aP

bP

cP

Disk 1 Disk 4Disk 3

(a)

(b)

Disk 2

a2
b2

a3
bP
c2
d2

a1

dP
c1
b1

b3

cP

d3
c3

d1

aP

Cloud 1 Cloud 2

Cloud 4

Cloud 3

-

FIGURE 3.5

(a) A (3, 4) RAID-5 configuration in which individual blocks are stripped over three disks and a parity block
is added; the parity block is constructed by XOR-ing the data blocks (e.g., aP = a1XORa2XORa3). The parity
blocks are distributed among the four disks: aP is on disk 4, bP on disk 3, cP on disk 2, and dP on disk 1.
(b) A system that strips data across four clouds; the proxy provides transparent access to data.

86 CHAPTER 3 Cloud Infrastructure

optimizes the data access (e.g., aggregates multiple write operations), converts data to formats specific
to each cloud, and so on.

This elegant idea immediately raises several questions: How does the response time of such a scheme
compare with that of a single storage system? How much overhead is introduced by the proxy? How could
this scheme avoid a single point of failure, the proxy? Are there standards for data access implemented
by all vendors?

An experiment to answer some of these question is reported in [5]; the Redundant Array of Cloud
Storage (RACS) system uses the same data model and mimics the interface of the S3 provided by AWS.
The S3 system, discussed in Section 3.1, stores the data in buckets, each bucket being a flat namespace
with keys associated with objects of arbitrary size but less than 5 GB. The prototype implementation
discussed in [5] led the authors to conclude that the cost increases and the performance penalties of
the RACS systems are relatively minor. The paper also suggests an implementation to avoid the single
point of failure by using several proxies. Then the system is able to recover from the failure of a single
proxy; clients are connected to several proxies and can access the data stored on multiple clouds.

It remains to be seen whether such a solution is feasible in practice for organizations with a very
large volume of data, given the limited number of cloud storage providers and the lack of standards for
data storage. A basic question is whether it makes sense to trade basic tenets of cloud computing, such
as simplicity and homogeneous resources controlled by a single administrative authority, for increased
reliability and freedom from vendor lock-in [67].

This brief discussion hints at the need for standardization and for scalable solutions, two of the many
challenges faced by cloud computing in the near future. The pervasive nature of scalability dominates all
aspects of cloud management and cloud applications; solutions that perform well on small systems are
no longer feasible when the number of systems or the volume of the input data of an application increases
by one or more orders of magnitude. Experiments with small test-bed systems produce inconclusive
results. The only alternative is to conduct intensive simulations to prove (or disprove) the advantages of a
particular algorithm for resource management or the feasibility of a particular data-intensive application.

We can also conclude that cloud computing poses challenging problems to service providers and
to users. The service providers have to develop strategies for resource management subject to quality
of service and cost constraints, as discussed in Chapter 6. At the same time, the cloud application
developers have to be aware of the limitations of the cloud computing model.

3.6 Cloud computing interoperability: the Intercloud
Cloud interoperability could alleviate the concern that users could become hopelessly dependent on a
single cloud service provider, the so-called vendor lock-in discussed in Section 3.5. It seems natural to
ask the question whether an Intercloud – a “cloud of clouds,” a federation of clouds that cooperate to
provide a better user experience – is technically and economically feasible. The Internet is a network
of networks; hence, it appears that an Intercloud seems plausible [47–49].

Closer scrutiny shows that the extension of the concept of interoperability from networks to clouds
is far from trivial. A network offers one high-level service, the transport of digital information from
a source, a host outside a network, to a destination, another host, or another network that can deliver
the information to its final destination. This transport of information through a network of networks is

3.6 Cloud Computing Interoperability: The Intercloud 87

feasible because before the Internet was born, agreements on basic questions were reached: (a) how
to uniquely identify the source and the destination of the information; (b) how to navigate through a
maze of networks; and (c) how to actually transport the data between a source and a destination. The
three elements on which agreements were reached are, respectively, the IP address, the IP protocol, and
transport protocols such as TCP and UDP.

The situation is quite different in cloud computing. First, there are no standards for storage of
processing; second, the clouds we have seen so far are based on different delivery models: SaaS, PaaS,
and IaaS. Moreover, the set of services supported by each of these delivery models is not only large, it
is open; new services are offered every few months. For example, in October 2012 Amazon announced
a new service, the AWS GovCloud (US).

The question of whether cloud service providers (CSPs) are willing to cooperate to build an Intercloud
is open. Some CSPs may think that they have a competitive advantage due to the uniqueness of the added
value of their services. Thus, exposing how they store and process information may adversely affect
their business. Moreover, no CSP will be willing to change its internal operation, so a first question is
whether an Intercloud could be built under these conditions.

Following the concepts borrowed from the Internet, a federation of clouds that does not dictate the
internal organization or the structure of a cloud but only the means to achieve cloud interoperability
is feasible. Nevertheless, building such an infrastructure seems a formidable task. First, we need a set
of standards for interoperability covering items such as naming, addressing, identity, trust, presence,
messaging, multicast, and time. Indeed, we need common standards for identifying all the objects
involved as well as the means to transfer, store, and process information, and we also need a common
clock to measure the time between two events.

An Intercloud would then require the development of an ontology11 for cloud computing. Then
each cloud service provider would have to create a description of all resources and services using this
ontology. Due to the very large number of systems and services, the volume of information provided by
individual cloud service providers would be so large that a distributed database not unlike the Domain
Name Service (DNS) would have to be created and maintained. According to [47] this vast amount of
information would be stored in Intercloud root nodes, analogous to the root nodes of the DNS.

Each cloud would then require an interface, a so-called Intercloud exchange, to translate the common
language describing all objects and actions included in a request originating from another cloud in terms
of its internal objects and actions. To be more precise, a request originated in one cloud would have to be
translated from the internal representation in that cloud to a common representation based on the shared
ontology and then, at the destination, it would be translated into an internal representation that can be
acted on by the destination cloud. This raises immediately the question of efficiency and performance.
This question cannot be fully answered now, since an Intercloud exists only on paper, but there is little
doubt that performance will be greatly affected.

Security is a major concern for cloud users, and an Intercloud could only create new threats. The
primary concern is that tasks will cross from one administrative domain to another and that sensitive
information about the tasks and users could be disclosed during this migration. A seamless migration
of tasks in an Intercloud requires a well-thought-out trust model.

11An ontology provides the means for knowledge representation within a domain. It consists of a set of domain concepts and
the relationships among the concepts.

88 CHAPTER 3 Cloud Infrastructure

The Public Key Infrastructure (PKI),12 an all-or-nothing trust model, is not adequate for an Inter-
cloud, where the trust must be nuanced. A nuanced model for handling digital certificates means that
one cloud acting on behalf of a user may grant access to another cloud to read data in storage, but not
to start new instances.

The solution advocated in [48] for trust management is based on dynamic trust indexes that can
change in time. The Intercloud roots play the role of Certificate Authority, whereas the Intercloud
exchanges determine the trust indexes between clouds.

Encryption must be used to protect the data in storage and in transit in the Intercloud. The OASIS13

Key Management Interoperability Protocol (KMIP)14 is proposed for key management.
In summary, the idea of an Intercloud opens up a wide range of interesting research topics. The practi-

cality of the concepts can only be discussed after the standardization efforts under way at NIST bear fruit.

3.7 Energy use and ecological impact of large-scale data centers
We start our discussion of energy use by data centers and its economic and ecological impact with a
brief analysis of the concept of energy-proportional systems. This is a very important concept because a
strategy for resource management in a computing cloud is to concentrate the load on a subset of servers
and switching the rest of the servers to a standby mode whenever possible [7]. This strategy aims to
reduce power consumption and, implicitly, the cost of providing computing and storage services; we
analyze this subject in depth in Chapter 6.

The operating efficiency of a system is captured by an expression of “performance per Watt of
power.” It is widely reported that, during the last two decades, the performance of computing systems
has increased much faster than their operating efficiency; for example, during the period 1998–2007,
the performance of supercomputers increased by 7,000% whereas their operating efficiency increased
by only 2,000%.

In an ideal world, the energy consumed by an idle system should be near zero and should grow
linearly with the system load. In real life, even machines whose power requirements scale linearly, use
more than half the power when idle than they use at full load (see Figure 3.6) [42].

Energy-proportional systems could lead to large savings in energy costs for computing clouds. An
energy-proportional system consumes no power when idle, very little power under a light load, and
gradually more power as the load increases. By definition, an ideal energy-proportional system is always
operating at 100% efficiency. Humans are a good approximation of an ideal energy proportional system;
human energy consumption is about 70 W at rest and 120 W on average on a daily basis and can go as
high as 1,000–2,000 W during a strenuous, short effort [42].

Different subsystems of a computing system behave differently in terms of energy efficiency. Many
processors have reasonably good energy-proportional profiles, but significant improvements in memory

12PKI is a model to create, distribute, revoke, use, and store digital certificates. It involves several components: (1) The
Certificate Authority (CA) binds public keys to user identities in a given domain. (2) The third-party Validation Authority
(VA) guarantees the uniqueness of the user identity. (3) The Registration Authority (RA) guarantees that the binding of the
public key to an individual cannot be challenged, the so-called nonrepudiation.
13OASIS stands for Organization for the Advancement of Structured Information Standards.
14The KMIP Specification version 1.0 is available at http://docs.oasis-open.org/kmip/spec/v1.0/kmip-
spec-1.0.html.

3.7 Energy Use and Ecological Impact of Large-Scale Data Centers 89

10

0
10

100

90

80

70

60

50

40

30

20

Percentage of
power usage

0 10020 30 40 50 60 70 80 90

Percentage
of system
utilization

Typical operating
region

Energy
efficiency

Power

FIGURE 3.6

Even when power requirements scale linearly with the load, the energy efficiency of a computing system is
not a linear function of the load; even when idle, a system may use 50% of the power corresponding to the
full load. Data collected over a long period of time shows that the typical operating region for the servers at
a data center is from about 10% to 50% of the load.

and disk subsystems are necessary. The processors used in servers consume less than one-third of their
peak power at very low load and have a dynamic range15 of more than 70% of peak power; the processors
used in mobile and/or embedded applications are better in this respect. According to [42] the dynamic
power range of other components of a system is much narrower: less than 50% for dynamic random
access memory (DRAM), 25% for disk drives, and 15% for networking switches.

A number of proposals have emerged for energy-proportional networks; the energy consumed by
such networks is proportional to the communication load. For example, in [6] the authors argue that a
data center network based on a flattened butterfly topology is more energy and cost efficient than one
using a different type of interconnect.

High-speed channels typically consist of multiple serial lanes with the same data rate; a physical unit
is stripped across all the active lanes. Channels commonly operate plesiochronously16 and are always
on, regardless of the load, because they must still send idle packets to maintain byte and lane alignment

15The dynamic range in this context is the lower and the upper range of the power consumption of the device. A large dynamic
range means that the device is better; it is able to operate at a lower fraction of its peak power when its load is low.
16Different parts of the system are almost but not quite perfectly synchronized; in this case, the core logic in the router operates
at a frequency different from that of the I/O channels.

90 CHAPTER 3 Cloud Infrastructure

across the multiple lanes. An example of an energy-proportional network is InfiniBand, discussed in
Section 3.1.

Energy saving in large-scale storage systems is also of concern. A strategy to reduce energy con-
sumption is to concentrate the workload on a small number of disks and allow the others to operate in
a low-power mode. One of the techniques to accomplish this task is based on replication. A replication
strategy based on a sliding window is reported in [364]; measurement results indicate that it performs
better than LRU, MRU, and LFU17 policies for a range of file sizes, file availability, and number of
client nodes, and the power requirements are reduced by as much as 31%.

Another technique is based on data migration. The system in [158] uses data storage in virtual nodes
managed with a distributed hash table; the migration is controlled by two algorithms, a short-term opti-
mization algorithm, used for gathering or spreading virtual nodes according to the daily variation of the
workload so that the number of active physical nodes is reduced to a minimum, and a long-term optimiza-
tion algorithm, used for coping with changes in the popularity of data over a longer period (e.g., a week).

The energy consumption of large-scale data centers and their costs for energy and for cooling are
significant now and are expected to increase substantially in the future. In 2006, the 6,000 data centers
in the United States reportedly consumed 61 × 109 KWh of energy, 1.5% of all electricity consumption
in the country, at a cost of $4.5 billion [364].

The predictions have been dire: The energy consumed by the data centers was expected to double
from 2006 to 2011; peak instantaneous demand was expected to increase from 7 GW in 2006 to 12 GW
in 2011, requiring the construction of 10 new power plants. The energy consumption of data centers
and the network infrastructure is predicted to reach 10, 300 TWh/year18 in 2030, based on 2010 levels
of efficiency [295]. These increases are expected in spite of the extraordinary reduction in energy
requirements for computing activities; over the past 30 years the energy efficiency per transistor on a
chip has improved by six orders of magnitude.

The effort to reduce energy use is focused on the computing, networking, and storage activities of
a data center. A 2010 report shows that a typical Google cluster spends most of its time within the
10–50% CPU utilization range; there is a mismatch between server workload profile and server energy
efficiency [6]. A similar behavior is also seen in the data center networks; these networks operate in a
very narrow dynamic range, and the power consumed when the network is idle is significant compared
to the power consumed when the network is fully utilized.

Many proposals argue that dynamic resource provisioning is necessary to minimize power consump-
tion. Two main issues are critical for energy saving: the amount of resources allocated to each application
and the placement of individual workloads. For example, a resource management framework combining
a utility-based dynamic virtual machine provisioning manager with a dynamic VM placement manager
to minimize power consumption and reduce SLA violations is presented in [358].

The support for network-centric content consumes a very large fraction of the network bandwidth;
according to the CISCO VNI forecast, consumer traffic was responsible for around 80% of bandwidth
use in 2009 and is expected to grow at a faster rate than business traffic. Data intensity for various
activities ranges from 20 MB/minute for HDTV streaming to 10 MB/minute for standard TV streaming,

17Least recently used (LRU), most recently used (MRU), and least frequently used (LFU) are replacement policies used by
memory hierarchies for caching and paging.
18One TWh (Tera Watt hour) is equal to 1012 Wh.

3.8 Service- and Compliance-Level Agreements 91

1.3 MB/minute for music streaming, 0.96 MB/minute for Internet radio, 0.35 MB/minute for Internet
browsing, and 0.0025 MB/minute for ebook reading [295].

The same study reports that if the energy demand for bandwidth is 4 Watts-hour per MB19 and
if the demand for network bandwidth is 3.2 GB/day/person or 2,572 EB/year for the entire world
population, then the energy required for this activity will be 1, 175 GW. These estimates do not count
very high-bandwidth applications that may emerge in the future, such as 3D TV, personalized immersive
entertainment such as Second Life, or massively multiplayer online games.

The power consumption required by different types of human activities is partially responsible for
the world’s greenhouse gas emissions. According to a recent study [295], the greenhouse gas emissions
due to data centers are estimated to increase from 116 × 106 tons of C O2 in 2007 to 257 tons in 2020,
due primarily to increased consumer demand. Environmentally opportunistic computing is a macro-
scale computing idea that exploits the physical and temporal mobility of modern computer processes.
A prototype called a Green Cloud is described in [376].

3.8 Service- and compliance-level agreements
A service-level agreement (SLA) is a negotiated contract between two parties, the customer and the
service provider. The agreement can be legally binding or informal and specifies the services that
the customer receive rather than how the service provider delivers the services. The objectives of the
agreement are:

• Identify and define customers’ needs and constraints, including the level of resources, security,
timing, and quality of service.

• Provide a framework for understanding. A critical aspect of this framework is a clear definition of
classes of service and costs.

• Simplify complex issues; for example, clarify the boundaries between the responsibilities of the
clients and those of the provider of service in case of failures.

• Reduce areas of conflict.
• Encourage dialogue in the event of disputes.
• Eliminate unrealistic expectations.

An SLA records a common understanding in several areas: (i) services, (ii) priorities, (iii) respon-
sibilities, (iv) guarantees, and (v) warranties. An agreement usually covers: services to be delivered,
performance, tracking and reporting, problem management, legal compliance and resolution of disputes,
customer duties and responsibilities, security, handling of confidential information, and termination.

Each area of service in cloud computing should define a “target level of service” or a “minimum
level of service” and specify the levels of availability, serviceability, performance, operation, or other
attributes of the service, such as billing. Penalties may also be specified in the case of noncompliance with
the SLA. It is expected that any service-oriented architecture (SOA) will eventually include middleware
supporting SLA management. The Framework 7 project supported by the European Union is researching
this area (see http://sla-at-soi.eu/).

19In the United States, in 2006, the energy consumed to download data from a data center across the Internet was in the range
of 9 to 16 Watts hour per MB.

92 CHAPTER 3 Cloud Infrastructure

The common metrics specified by an SLA are service-specific. For example, the metrics used by a call
center usually are: (i) abandonment rate: percentage of calls abandoned while waiting to be answered;
(ii) average speed to answer: average time before the service desk answers a call; (iii) time service factor:
percentage of calls answered within a definite time frame; (iv) first-call resolution: percentage of incom-
ing calls that can be resolved without a callback; and (v) turnaround time: time to complete a certain task.

There are two well-differentiated phases in SLA management: the negotiation of the contract and
the monitoring of its fulfillment in real time. In turn, automated negotiation has three main components:
(i) the object of negotiation, which defines the attributes and constraints under negotiation; (ii) the
negotiation protocols, which describe the interaction between negotiating parties; and (iii) the decision
models responsible for processing proposals and generating counterproposals.

The concept of compliance in cloud computing is discussed in [55] in the context of the user’s
ability to select a provider of service. The selection process is subject to customizable compliance with
user requirements, such as security, deadlines, and costs. The authors propose an infrastructure called
Compliant Cloud Computing (C3) consisting of: (i) a language to express user requirements and the
compliance level agreements (CLAs) and (ii) the middleware for managing CLAs.

The Web Service Agreement Specification (WS-Agreement) [20] uses an XML-based language
to define a protocol for creating an agreement using a predefined template with some customizable
aspects. It only supports one-round negotiation without counterproposals. A policy-based framework
for automated SLA negotiation for a virtual computing environment is described in [379].

3.9 Responsibility sharing between user and cloud service provider
After reviewing cloud services provided by Amazon, Google, and Microsoft, we are in a better
position to understand the differences among SaaS, IaaS, and PaaS. There is no confusion about SaaS;
the service provider supplies both the hardware and the application software, and the user has direct
access to these services through a Web interface and has no control over cloud resources. Typical exam-
ples are Google with Gmail, Google Docs, Google Calendar, Google Groups, and Picasa and Microsoft
with the Online Services.

In the case of IaaS, the service provider supplies the hardware (servers, storage, networks) and
system software (operating systems, databases); in addition, the provider ensures system attributes such
as security, fault tolerance, and load balancing. The representative of IaaS is Amazon AWS.

PaaS provides only a platform, including the hardware and system software, such as operating systems
and databases; the service provider is responsible for system updates, patches, and software maintenance.
PaaS does not allow any user control of the operating system, security features, or the ability to install
applications. Typical examples are Google App Engine, Microsoft Azure, and Force.com, provided by
Salesforce.com.

The level of user control over the system in IaaS is different form PaaS. IaaS provides total control,
whereas PaaS typically provides no control. Consequently, IaaS incurs administration costs similar to
a traditional computing infrastructure, whereas the administrative costs are virtually zero for PaaS.

It is critical for a cloud user to carefully read the SLA and to understand the limitations of the
liability a cloud provider is willing to accept. In many instances the liabilities do not apply to damages
caused by a third party or to failures attributed either to the customer’s hardware and software or to
hardware and software from a third party.

3.10 User Experience 93

Interface

Application

Operating system

Hypervisor

Computing service

Storage service

Network

Local infrastructure

Interface

Application

Operating system

Hypervisor

Computing service

Storage service

Network

Local infrastructure

Interface

Application

Operating system

Hypervisor

Computing service

Storage service

Network

Local infrastructure

SaaS PaaS IaaS
C
L
O
U
D

U
S
E
R

S
E
R
V
I
C
E

P
R
O
V
I
D
E
R

User responsibility

FIGURE 3.7

The limits of responsibility between a cloud user and the cloud service provider.

The limits of responsibility between the cloud user and the cloud service provider are different for
the three service-delivery models, as we can see in Figure 3.7. In the case of SaaS the user is partially
responsible for the interface; the user responsibility increases in the case of PaaS and includes the
interface and the application. In the case of IaaS the user is responsible for all the events occurring in
the virtual machine running the application.

For example, if a distributed denial-of-service attack (DDoS) causes the entire IaaS infrastructure to
fail, the cloud service provider is responsible for the consequences of the attack. The user is responsible
if the DDoS affects only several instances, including the ones running the user application. A recent
posting describes the limits of responsibility illustrated in Figure 3.7 and argues that security should be a
major concern for IaaS cloud users, (see www.sans.org/cloud/2012/07/19/can-i-outsource-my-
security-to-the-cloud).

3.10 User experience
There have been a few studies of user experience based on a large population of cloud computing
users. An empirical study of the experience of a small group of users of the Finish Cloud Computing

94 CHAPTER 3 Cloud Infrastructure

Consortium is reported in [279]. The main user concerns are security threats, the dependence on fast
Internet connections that forced version updates, data ownership, and user behavior monitoring. All users
reported that trust in the cloud services is important, two-thirds raised the point of fuzzy boundaries of
liability between cloud user and provider, about half did not fully comprehend the cloud functions and
its behavior, and about one-third were concerned about security threats.

The security threats perceived by this group of users are: (i) abuse and villainous use of the cloud;
(ii) APIs that are not fully secure; (iii) malicious insiders; (iv) account hijacking; (iv) data leaks; and
(v) issues related to shared resources. Identity theft and privacy were major concerns for about half of
the users questioned; availability, liability, and data ownership and copyright were raised by a third of
respondents.

The suggested solutions to these problems are as follows: SLAs and tools to monitor usage should
be deployed to prevent abuse of the cloud; data encryption and security testing should enhance the
API security; an independent security layer should be added to prevent threats caused by malicious
insiders; strong authentication and authorization should be enforced to prevent account hijacking; data
decryption in a secure environment should be implemented to prevent data leakage; and compart-
mentalization of components and firewalls should be deployed to limit the negative effect of resource
sharing.

A broad set of concerns identified by the NIST working group on cloud security includes:

• Potential loss of control/ownership of data.
• Data integration, privacy enforcement, data encryption.
• Data remanence after deprovisioning.
• Multitenant data isolation.
• Data location requirements within national borders.
• Hypervisor security.
• Audit data integrity protection.
• Verification of subscriber policies through provider controls.
• Certification/accreditation requirements for a given cloud service.

A 2010 study conducted by IBM [176] aims to identify barriers to public and private cloud adoption.
The study is based on interviews with more than 1,000 individuals responsible for IT decision making
around the world. Seventy-seven percent of the respondents cited cost savings as the key argument in
favor of public cloud adoption, though only 30% of them believed that public clouds are “very appealing
or appealing” for their line of business, versus 64% for private clouds and 34% for hybrid ones.

The reasons driving the decision to use public clouds and the percentage of responders who considered
each element critical are shown in Table 3.6. In view of the high energy costs for operating a data center
(discussed in Section 3.7), it seems strange that only 29% of the respondents seem to be concerned
about lower energy costs.

The top workloads mentioned by the users involved in this study are data mining and other analytics
(83%), application streaming (83%), help desk services (80%), industry-specific applications (80%),
and development environments (80%).

The study also identified workloads that are not good candidates for migration to a public cloud
environment:

3.11 Software Licensing 95

Table 3.6 The reasons driving the decision to use public clouds.

Reason Respondents Who Agree

Improved system reliability and availability 50%
Pay only for what you use 50%
Hardware savings 47%
Software license savings 46%
Lower labor costs 44%
Lower maintenance costs 42%
Reduced IT support needs 40%
Ability to take advantage of the latest functionality 40%
Less pressure on internal resources 39%
Solve problems related to updating/upgrading 39%
Rapid deployment 39%
Ability to scale up resources to meet needs 39%
Ability to focus on core competencies 38%
Take advantage of the improved economies of scale 37%
Reduced infrastructure management needs 37%
Lower energy costs 29%
Reduced space requirements 26%
Create new revenue streams 23%

• Sensitive data such as employee and health care records.
• Multiple codependent services (e.g., online transaction processing).
• Third-party software without cloud licensing.
• Workloads requiring auditability and accountability.
• Workloads requiring customization.

Such studies help identify the concerns of potential cloud users and the critical issues for cloud
research.

3.11 Software Licensing
Software licensing for cloud computing is an enduring problem without a universally accepted solution
at this time. The license management technology is based on the old model of computing centers with
licenses given on the basis of named users or as site licenses. This licensing technology, developed for
a centrally managed environment, cannot accommodate the distributed service infrastructure of cloud
computing or of grid computing.

Only very recently IBM reached an agreement allowing some of its software products to be used on
EC2. Furthermore, MathWorks developed a business model for the use of MATLAB in grid environments
[63]. The Software-as-a-Service (SaaS) deployment model is gaining acceptance because it allows users
to pay only for the services they use.

96 CHAPTER 3 Cloud Infrastructure

There is significant pressure to change the traditional software licensing model and find nonhard-
ware-based solutions for cloud computing. The increased negotiating power of users, coupled with
the increase in software piracy, has renewed interest in alternative schemes such as those proposed by
the SmartLM research project (www.smartlm.eu). SmartLM license management requires a complex
software infrastructure involving SLA, negotiation protocols, authentication, and other management
functions.

A commercial product based on the ideas developed by this research project is elasticLM, which
provides license and billing for Web-based services [63]. The architecture of the elasticLM license
service has several layers: coallocation, authentication, administration, management, business, and
persistency. The authentication layer authenticates communication between the license service and the
billing service as well as the individual applications; the persistence layer stores the usage records. The
main responsibility of the business layer is to provide the licensing service with the licenses prices, and
the management coordinates various components of the automated billing service.

When a user requests a license from the license service, the terms of the license usage are negotiated
and they are part of an SLA document. The negotiation is based on application-specific templates and
the license cost becomes part of the SLA. The SLA describes all aspects of resource usage, including
the ID of application, duration, number of processors, and guarantees, such as the maximum cost and
deadlines. When multiple negotiation steps are necessary, the WS-Agreement Negotiation protocol
is used.

To understand the complexity of the issues related to software licensing, we point out some of
the difficulties related to authorization. To verify the authorization to use a license, an application
must have the certificate of an authority. This certificate must be available locally to the applica-
tion because the application may be executed in an environment with restricted network access. This
opens up the possibility for an administrator to hijack the license mechanism by exchanging the local
certificate.

3.12 Further reading
Information about cloud computing at Amazon, Google, Microsoft, HP, and Oracle is available from
the following sites:

• Amazon: http://aws.amazon.com/ec2/

• Google: http://code.google.com/appengine/

• Microsoft: www.microsoft.com/windowsazure/

• HP: www.hp.com/go/cloud

• Oracle: http://cloud.oracle.com

Several sites provide additional information about the open-source platforms Eucalyptus, Open-
Nebula, and Nimbus:

• Eucalyptus: www.eucalyptus.com

• Open-Nebula: www.opennebula.org

• Nimbus: www.nimbusproject.org

3.14 Exercises and Problems 97

A white paper on SLA specification can be found at www.itsm.info, a toolkit at
www.service-level-agreement.net, and a Web service-level agreement (WSLA) at
www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

Energy use and ecological impact are discussed in [6,158,295,358,364].
Information about the OpenStack, an open-source cloud operating system, is available from the

project site www.openstack.org. The Intercloud is discussed in several papers, including [47–49].
Alternative architectures for cloud computing have been proposed [111].

Several other references including [221,278,283,302,310,378] cover important aspects of the cloud
infrastructure.

3.13 History notes
Amazon was one of the first providers of cloud computing. One year after the beta release of EC2 in 2006,
two new instance types (Large and Extra-Large) were added, followed in 2008 by two more types, High-
CPU Medium and High-CPU Extra-Large. New features include static IP addresses, availability zones,
and user-selectable kernels as well as the Block Store (EBS). Amazon EC2 has been in full production
mode since October 2008 and supports an SLA and the Microsoft Windows operating system as well as
the Microsoft SQL Server.

3.14 Exercises and problems
Problem 1. Several desirable properties of a large-scale distributed system were discussed in

Section 2.3. The list includes transparency of access, location, concurrency, replication,
failure, migration, performance, and scaling. Analyze how each one of these properties
applies to AWS.

Problem 2. Compare the Oracle Cloud offerings (see https://cloud.oracle.com) with the cloud
services provided by Amazon, Google, and Microsoft.

Problem 3. Read the IBM report [176] and discuss the workload preferences for private and public
clouds and the reasons for the preferences.

Problem 4. In Section 3.7 we introduced the concept of energy-proportional systems and we saw
that different system components have different dynamic ranges. Sketch a strategy to
reduce the power consumption in a lightly loaded cloud, and discuss the steps for placing
a computational server in standby mode and then for bringing it back up to active mode.

Problem 5. Read the paper that introduced the concept of dataspaces [127] and analyze the benefits
and the problems with this new idea. Research the literature for potential application of
dataspaces for scientific data management in a domain of your choice, be it the search
for the Higgs boson at CERN, structural biology, cancer research, or another important
research topic that involves data-intensive applications.

98 CHAPTER 3 Cloud Infrastructure

Problem 6. In Section 3.7 it was mentioned that InfiniBand can be considered an energy-proportional
network. The network is used by supercomputers (see http://i.top500.org/); the
InfiniBand fabric is also used to connect compute nodes, compute nodes with storage
servers, and Exadata and Exalogic systems at Oracle data centers. Analyze the features
of InfiniBand that are critical to reduction of energy consumption.

Problem 7. Many organizations operate one or more computer clusters and contemplate the migration
to private clouds. What are the arguments for and against such an effort?

Problem 8. Evaluate the SLA toolkit at www.service-level-agreement.net.Is the interactive
guide useful? What does it miss? Does the SLA template include all the clauses that are
important in your view? If not, what is missing? Are the examples helpful?

Problem 9. Software licensing is a major problem in cloud computing. Discuss several ideas to
prevent an administrator from hijacking the authorization to use a software license.

Problem 10. Annotation schemes are widely used by popular services such as the Flickr photo-sharing
service, which supports annotation of photos. Sketch the organization of a cloud service
used for sharing medical X-ray, tomography, CAT scan, and other medical images and
discuss the main challenges for its implementation.

4
CHAPTER

Cloud Computing: Applications
and Paradigms

The efforts to support large-scale distributed computing have encountered major difficulties over the
years. The users of these systems discovered how difficult it was to locate the systems able to run an
application. They soon realized that it is equally difficult to scale up and down to accommodate a dynamic
load, to recover after a system failure, and to efficiently support checkpoint or restarting procedures.

At the same time, the providers of computing cycles and storage realized the difficulties in managing
a large number of systems and providing guarantees for the quality of service. Any economic advantage
offered by resource concentration was offset by the cost of management and the relatively low utilization
of costly resources.

Cloud computing is very attractive to users for several economic reasons: It requires a very low
infrastructure investment because there is no need to assemble and maintain a large-scale system and
it has low utility-based computing costs because customers are only billed for the infrastructure used.
At the same time, users benefit from the potential to reduce the execution time of compute-intensive
and data-intensive applications through parallelization. If an application can partition the workload in
n segments and spawn n instances of itself, the execution time could be reduced by a factor close to n.

Moreover, because application developers enjoy the advantages of a just-in-time infrastructure, they
are free to design an application without being concerned with the system where the application will
run. Often, an application becomes the victim of its own success, attracting a user population larger than
the system can support. Cloud elasticity allows such an application to absorb the additional workload
without any effort from application developers.

Cloud computing is also beneficial for the providers of computing cycles because it typically leads
to more efficient resource utilization. The future success of cloud computing rests on the ability of
companies promoting utility computing to convince an increasingly large segment of the user population
of the advantages of network-centric computing and content. This translates into the ability to provide
satisfactory solutions to critical aspects of security, scalability, reliability, quality of service, and the
requirements enforced by SLAs.

The appeal of cloud computing is its focus on enterprise applications. This clearly differentiates it
from the grid computing effort, which was largely focused on scientific and engineering applications.
Of course, the other major advantage of the cloud computing approach over grid computing is the
concentration of resources in large data centers in a single administrative domain.

It is expected that utility computing providers such as Amazon, Apple, Google, HP, IBM, Microsoft,
Oracle, and others will in the future develop application suites to attract customers. Microsoft seems
well positioned in the effort to attract customers to its Azure platform since it already has many applica-
tions for enterprise customers, while Red Hat and Amazon may choose to stay with their “infrastructure
only” approach [27].

Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00004-X
© 2013 Elsevier Inc. All rights reserved.

99

100 CHAPTER 4 Cloud Computing: Applications and Paradigms

The main attraction of cloud computing is the ability to use as many servers as necessary to optimally
respond to the cost and the timing constraints of an application. This is possible only if the workload
can be partitioned in segments of arbitrary size and can be processed in parallel by the servers available
in the cloud. In Section 4.6 we discuss arbitrarily divisible workloads that can be partitioned into an
arbitrarily large number of segments; the arbitrarily divisible load-sharing model is common to many
applications, and these are precisely the applications suitable for cloud computing.

Web services, database services, and transaction-based services are ideal applications for cloud
computing. The resource requirements of transaction-oriented services are dependent on the current
load, which itself is very dynamic; the cost/performance profile of such applications benefits from an
elastic environment in which resources are available when needed and users pay only for the resources
they consume.

Not all applications are suitable for cloud computing; applications for which the workload cannot be
arbitrarily partitioned or that require intensive communication among concurrent instances are unlikely
to perform well on a cloud. An application with a complex workflow and multiple dependencies, as
is often the case in high-performance computing, could require longer execution times and higher
costs on a cloud. The benchmarks for high-performance computing discussed in Section 4.9 show that
communication and memory-intensive applications may not exhibit the performance levels shown when
running on supercomputers with low latency and high-bandwidth interconnects.

4.1 Challenges for cloud computing
The development of efficient cloud applications inherits the challenges posed by the natural imbal-
ance among computing, I/O, and communication bandwidths of physical systems. These challenges
are greatly amplified due to the scale of the system, its distributed nature, and the fact that virtually
all applications are data-intensive. Though cloud computing infrastructures attempt to automatically
distribute and balance a load, the application developer is still left with the responsibility of placing the
data close to the processing site and identifying optimal storage for the data.

One of the main advantages of cloud computing, the shared infrastructure, could also have a negative
impact. Performance isolation1 is nearly impossible to reach in a real system, especially when the system
is heavily loaded. The performance of virtual machines fluctuates based on the load, the infrastructure
services, and the environment, including the other users. Security isolation is also challenging on multi-
tenant systems.

Reliability is also a major concern; node failures are to be expected whenever a large number of
nodes cooperate for the computations. Choosing an optimal instance (in terms of performance isolation,
reliability, and security) from those offered by the cloud infrastructure is another critical factor to be
considered. Of course, cost considerations also play a role in the choice of the instance type.

Many applications consist of multiple stages; in turn, each stage may involve multiple instances
running in parallel on the systems of the cloud and communicating among them. Thus, efficiency,
consistency, and communication scalability are major concerns for an application developer. Indeed,

1Performance and security isolation of virtual machines are discussed in Section 5.5.

4.2 Existing Cloud Applications and New Application Opportunities 101

due to shared networks and unknown topology, cloud infrastructures exhibit internode latency and
bandwidth fluctuations that affect application performance.

Data storage plays a critical role in the performance of any data-intensive application; the organization
of the storage, the storage location, and the storage bandwidth must be carefully analyzed to lead to
optimal application performance. Clouds support many storage options to set up a file system similar
to the Hadoop file system discussed in Section 8.6; among them are off-instance cloud storage (e.g.,
S3), mountable off-instance block storage (e.g., EBS), and storage persistent for the lifetime of the
instance.

Many data-intensive applications use metadata associated with individual data records; for example,
the metadata for an MPEG audio file may include the name of the song, the singer, recording infor-
mation, and so on. Metadata should be stored for easy access, and the storage should be scalable and
reliable.

Another important consideration for the application developer is logging. Performance considera-
tions limit the amount of data logging, whereas the ability to identify the source of unexpected results
and errors is helped by frequent logging. Logging is typically done using instance storage preserved only
for the lifetime of the instance. Thus, measures to preserve the logs for a postmortem analysis must be
taken. Another challenge awaiting resolution is related to software licensing, discussed in Section 3.11.

4.2 Existing cloud applications and new application opportunities
Existing cloud applications can be divided into several broad categories: (i) processing pipelines;
(ii) batch processing systems; and (iii) Web applications [360].

Processing pipelines are data-intensive and sometimes compute-intensive applications and represent
a fairly large segment of applications currently running on the cloud. Several types of data processing
applications can be identified:

• Indexing. The processing pipeline supports indexing of large datasets created by Web crawler
engines.

• Data mining. The processing pipeline supports searching very large collections of records to locate
items of interests.

• Image processing. A number of companies allow users to store their images on the cloud (e.g., Flickr
(www.flickr.com) and Google (http://picasa.google.com/)). The image-processing
pipelines support image conversion (e.g., enlarging an image or creating thumbnails). They can also
be used to compress or encrypt images.

• Video transcoding. The processing pipeline transcodes from one video format to another (e.g., from
AVI to MPEG).

• Document processing. The processing pipeline converts very large collections of documents from
one format to another (e.g., from Word to PDF), or encrypts the documents. It could also use optical
character recognition (OCR) to produce digital images of documents.

Batch processing systems also cover a broad spectrum of data-intensive applications in enterprise
computing. Such applications typically have deadlines, and the failure to meet these deadlines could

102 CHAPTER 4 Cloud Computing: Applications and Paradigms

have serious economic consequences. Security is also a critical aspect for many applications of batch
processing. A nonexhaustive list of batch processing applications includes:

• Generation of daily, weekly, monthly, and annual activity reports for organizations in retail, manu-
facturing, and other economic sectors.

• Processing, aggregation, and summaries of daily transactions for financial institutions, insurance
companies, and healthcare organizations.

• Inventory management for large corporations.
• Processing billing and payroll records.
• Management of the software development (e.g., nightly updates of software repositories).
• Automatic testing and verification of software and hardware systems.

Finally, and of increasing importance, are cloud applications in the area of Web access. Several
categories of Web sites have a periodic or a temporary presence, such as the Web sites for conferences
or other events. There are also Web sites that are active during a particular season (e.g., the holiday
season) or that support a particular type of activity, such as income tax reporting with the April 15
deadline each year. Other limited-time Web sites used for promotional activities “sleep” during the
night and auto-scale during the day.

It makes economic sense to store the data in the cloud close to where the application runs; as we saw
in Section 3.1, the cost per GB is low and the processing is much more efficient when the data is stored
close to the computational servers. This leads us to believe that several new classes of cloud computing
applications could emerge in the years to come – for example, batch processing for decision support
systems and other aspects of business analytics. Another class of new applications could be parallel
batch processing based on programming abstractions, such as MapReduce, discussed in Section 4.6.
Mobile interactive applications that process large volumes of data from different types of sensors and
services that combine more than one data source (e.g., mashups2) are obvious candidates for cloud
computing.

Science and engineering could greatly benefit from cloud computing because many applications
in these areas are compute- and data-intensive. Similarly, a cloud dedicated to education would be
extremely useful. Mathematical software such as MATLAB and Mathematica could also run on the
cloud.

4.3 Architectural styles for cloud applications
Cloud computing is based on the client-server paradigm discussed in Section 2.13. The vast majority
of cloud applications take advantage of request/response communication between clients and stateless
servers. A stateless server does not require a client to first establish a connection to the server. Instead,
it views a client request as an independent transaction and responds to it.

The advantages of stateless servers are obvious. Recovering from a server failure requires consid-
erable overhead for a server that maintains the state of all its connections, whereas in the case of a

2A mashup is an application that uses and combines data, presentation, or functionality from two or more sources to create
a service. The fast integration, frequently using open APIs and multiple data sources, produces results not envisioned by the
original services. Combination, visualization, and aggregation are the main attributes of mashups.

4.3 Architectural Styles for Cloud Applications 103

stateless server a client is not affected while a server goes down and then comes back up between two
consecutive requests. A stateless system is simpler, more robust, and scalable. A client does not have
to be concerned with the state of the server. If the client receives a response to a request, that means
that the server is up and running; if not, it should resend the request later. A connection-based service
must reserve spaces to maintain the state of each connection with a client; therefore, such a system is
not scalable, and the number of clients a server could interact with at any given time is limited by the
storage space available to the server.

For example, a basic Web server is stateless; it responds to an HTTP request without maintaining a
history of past interactions with the client. The client, a browser, is also stateless since it sends requests
and waits for responses. The Hypertext Transfer Protocol (HTTP) used by a browser to communicate with
the Web server is a request/response application protocol. HTTP uses the Transport Control Protocol
(TCP), a connection-oriented and reliable transport protocol. The use of TCP ensures reliable delivery
of large objects but exposes the Web servers to denial-of-service attacks when malicious clients fake
attempts to establish a TCP connection and force the server to allocate space for the connection.

A critical aspect of the development of networked applications is how processes and threads running
on systems with different architectures and possibly compiled from different programming languages
can communicate structured information with one another. First, the internal representation of the two
structures at the two sites may be different. One system may use Big-Endian and the other Little-Endian
representation. The character representations may also be different. Second, a communication channel
transmits a sequence of bits and bytes; thus, the data structure must be serialized at the sending site and
reconstructed at the receiving site.

Several other considerations must be analyzed before deciding on the architectural style of an appli-
cation. The term neutrality refers to the ability of the application protocol to use different transport
protocols such as TCP or UDP and, in general, to run on top of a different protocol stack. For example,
we shall see that SOAP can use TCP but also UDP, SMTP,3 or JMS4 as transport vehicles. Extensibility
refers to the ability to incorporate additional functions, such as security. Independence refers to the
ability to accommodate different programming styles.

Very often the application clients and the servers running on the cloud communicate using RPCs,
discussed in Section 2.13, but other styles of communication are possible. RPC-based applications use
stubs to convert the parameters involved in an RPC call. A stub performs two functions: marshalling the
data structures and serialization. A more general concept is that of an Object Request Broker (ORB),
the middleware that facilitates communication of networked applications. The ORB at the sending site
transforms the data structures used internally by a sending process to a byte sequence and transmits
this byte sequence over the network. The ORB at the receiving site maps the byte sequence to the data
structures used internally by the receiving process.

The Common Object Request Broker Architecture (CORBA) was developed in the early 1990s to allow
networked applications developed in different programming languages and running on systems with
different architectures and system software to work with one another. At the heart of the system is the
Interface Definition Language (IDL), used to specify the interface of an object. The IDL representation

3Simple Mail Transfer Protocol (SMTP) is an application protocol defined in the early 1980s to support email services.
4Java Message Service (JMS) is a middleware of the Java Platform for sending messages between two or more clients.

104 CHAPTER 4 Cloud Computing: Applications and Paradigms

is then mapped to the set of programming languages, including C, C++, Java, Smalltalk, Ruby, LISP,
and Python. Networked applications pass CORBA by reference and pass data by value.

The Simple Object Access Protocol (SOAP) is an application protocol developed in 1998 for Web
applications; its message format is based on the Extensible Markup Language (XML). SOAP uses
TCP and, more recently, UDP transport protocols. It can also be stacked above other application layer
protocols such as HTTP, SMTP, or JMS. The processing model of SOAP is based on a network consisting
of senders, receivers, intermediaries, message originators, ultimate receivers, and message paths. SOAP
is an underlying layer of Web Services.

The Web Services Description Language (WSDL) (see www.w3.org/TR/wsdl) was introduced
in 2001 as an XML-based grammar to describe communication between endpoints of a networked
application. The abstract definition of the elements involved include services, collections of endpoints
of communication; types, containers for data type definitions; operations, descriptions of actions sup-
ported by a service; port types, operations supported by endpoints; bindings, protocols and data formats
supported by a particular port type; and port, an endpoint as a combination of a binding and a network
address. These abstractions are mapped to concrete message formats and network protocols to define
endpoints and services.

Representational State Transfer (REST) is a style of software architecture for distributed hypermedia
systems. REST supports client communication with stateless servers. It is platform- and language-
independent, supports data caching, and can be used in the presence of firewalls.

REST almost always uses HTTP to support all four Create/Read/Update/Delete (CRUD) operations.
It uses GET, PUT, and DELETE to read, write, and delete the data, respectively. REST is a much
easier-to-use alternative to RPC, CORBA, or Web Services such as SOAP or WSDL. For example, to
retrieve the address of an individual from a database, a REST system sends a URL specifying the
network address of the database, the name of the individual, and the specific attribute in the record
the client application wants to retrieve – in this case, the address. The corresponding SOAP version
of such a request consists of 10 lines or more of XML. The REST server responds with the address of
the individual. This justifies the statement that REST is a lightweight protocol. As far as usability is
concerned, REST is easier to build from scratch and to debug, but SOAP is supported by tools that use
self-documentation (e.g., WSDL to generate the code to connect).

4.4 Workflows: Coordination of multiple activities
Many cloud applications require the completion of multiple interdependent tasks; the description of a
complex activity involving such an ensemble of tasks is known as a workflow. In this section we discuss
workflow models, the life cycle of a workflow, the desirable properties of a workflow description,
workflow patterns, reachability of the goal state of a workflow, and dynamic workflows and conclude
with a parallel between traditional transaction systems and cloud workflows [230].

Workflow models are abstractions revealing the most important properties of the entities participating
in a workflow management system. Task is the central concept in workflow modeling; a task is a unit
of work to be performed on the cloud, and it is characterized by several attributes, such as:

• Name. A string of characters uniquely identifying the task.
• Description. A natural language description of the task.

4.4 Workflows: Coordination of Multiple Activities 105

• Actions. Modifications of the environment caused by the execution of the task.
• Preconditions. Boolean expressions that must be true before the action(s) of the task can take place.
• Post-conditions. Boolean expressions that must be true after the action(s) of the task take place.
• Attributes. Provide indications of the type and quantity of resources necessary for the execution of

the task, the actors in charge of the tasks, the security requirements, whether the task is reversible,
and other task characteristics.

• Exceptions. Provide information on how to handle abnormal events. The exceptions supported by a
task consist of a list of <event, action> pairs. The exceptions included in the task exception
list are called anticipated exceptions, as opposed to unanticipated exceptions. Events not included
in the exception list trigger replanning. Replanning means restructuring of a process or redefinition
of the relationship among various tasks.

A composite task is a structure describing a subset of tasks and the order of their execution. A primitive
task is one that cannot be decomposed into simpler tasks. A composite task inherits some properties
from workflows; it consists of tasks and has one start symbol and possibly several end symbols. At
the same time, a composite task inherits some properties from tasks; it has a name, preconditions, and
post-conditions.

A routing task is a special-purpose task connecting two tasks in a workflow description. The task
that has just completed execution is called the predecessor task; the one to be initiated next is called
the successor task. A routing task could trigger a sequential, concurrent, or iterative execution. Several
types of routing task exist:

• A fork routing task triggers execution of several successor tasks. Several semantics for this construct
are possible:

• All successor tasks are enabled.
• Each successor task is associated with a condition. The conditions for all tasks are evaluated,

and only the tasks with a true condition are enabled.
• Each successor task is associated with a condition. The conditions for all tasks are evaluated,

but the conditions are mutually exclusive and only one condition may be true. Thus, only one
task is enabled.

• Nondeterministic, k out of n > k successors are selected at random to be enabled.

• A join routing task waits for completion of its predecessor tasks. There are several semantics for the
join routing task:

• The successor is enabled after all predecessors end.
• The successor is enabled after k out of n > k predecessors end.
• Iterative: The tasks between the fork and the join are executed repeatedly.

A process description, also called a workflow schema, is a structure describing the tasks or activities
to be executed and the order of their execution. A process description contains one start symbol and
one end symbol. A process description can be provided in a workflow definition language (WFDL),
supporting constructs for choice, concurrent execution, the classical fork, join constructs, and iterative
execution. Clearly, a workflow description resembles a flowchart, a concept we are familiar with from
programming.

106 CHAPTER 4 Cloud Computing: Applications and Paradigms

User

Planning
Engine

Verification
Engine

Enactment
EngineUnanticipated Exception

Handling

User
Automatic

Programming

Compiler

Processor
Running

the Process

(a) (b)

Dynamic s Static s Static Programs Dynamic Programs

Run-Time Program
Modification Requests

FIGURE 4.1

A parallel between workflows and programs. (a) The life cycle of a workflow. (b) The life cycle of a computer
program. The workflow definition is analogous to writing a program. Planning is analogous to automatic
program generation. Verification corresponds to syntactic verification of a program. Workflow enactment
mirrors the execution of a program. A static workflow corresponds to a static program and a dynamic workflow
to a dynamic program.

The phases in the life cycle of a workflow are creation, definition, verification, and enactment. There
is a striking similarity between the life cycle of a workflow and that of a traditional computer program,
namely, creation, compilation, and execution (see Figure 4.1). The workflow specification by means of
a workflow description language is analogous to writing a program. Planning is equivalent to automatic
program generation. Workflow verification corresponds to syntactic verification of a program, and
workflow enactment mirrors the execution of a compiled program.

A case is an instance of a process description. The start and stop symbols in the workflow description
enable the creation and the termination of a case, respectively. An enactment model describes the steps

4.4 Workflows: Coordination of Multiple Activities 107

taken to process a case. When a computer executes all tasks required by a workflow the enactment can
be performed by a program called an enactment engine.

The state of a case at time t is defined in terms of tasks already completed at that time. Events cause
transitions between states. Identifying the states of a case consisting of concurrent activities is consider-
ably more difficult than identifying the states of a strictly sequential process. Indeed, when several activ-
ities could proceed concurrently, the state has to reflect the progress made on each independent activity.

An alternative description of a workflow can be provided by a transition system describing the possible
paths from the current state to a goal state. Sometimes, instead of providing a process description, we
may specify only the goal state and expect the system to generate a workflow description that could
lead to that state through a set of actions. In this case, the new workflow description is generated
automatically, knowing a set of tasks and the preconditions and post-conditions for each one of them.
In artificial intelligence (AI) this activity is known as planning.

The state space of a process includes one initial state and one goal state; a transition system identifies
all possible paths from the initial to the goal state. A case corresponds to a particular path in the transition
system. The state of a case tracks the progress made during the enactment of that case.

Among the most desirable properties of a process description are the safety and liveness of the
process. Informally, safety means that nothing “bad” ever happens, and liveness means that something
“good” will eventually take place should a case based on the process be enacted. Not all processes are
safe and live. For example, the process description in Figure 4.2(a) violates the liveness requirement.
As long as task C is chosen after completion of B, the process will terminate. However, if D is chosen,
then F will never be instantiated, because it requires the completion of both C and E . The process will
never terminate, because G requires completion of both D and F .

A process description language should be unambiguous and should allow a verification of the process
description before the enactment of a case. It is entirely possible that a process description may be enacted
correctly in some cases but fail for others. Such enactment failures may be very costly and should be
prevented by a thorough verification at the process definition time. To avoid enactment errors, we need to
verify process description and check for desirable properties such as safety and liveness. Some process
description methods are more suitable for verification than others.

A note of caution: Although the original description of a process could be live, the actual enactment
of a case may be affected by deadlocks due to resource allocation. To illustrate this situation, consider
two tasks, A and B, running concurrently. Each of them needs exclusive access to resources r and q for
a period of time. Either of two scenarios is possible:

1. A or B acquires both resources and then releases them and allows the other task to do the same.
2. We face the undesirable situation in Figure 4.2(b) when, at time t1, task A acquires r and continues

its execution; then at time t2 task B acquires q and continues to run. Then at time t3 task B attempts
to acquire r and it blocks because r is under the control of A. Task A continues to run and at time
t4 attempts to acquire q and it blocks because q is under the control of B.

The deadlock illustrated in Figure 4.2(b) can be avoided by requesting each task to acquire all
resources at the same time. The price to pay is underutilization of resources. Indeed, the idle time of
each resource increases under this scheme.

Workflow pattern refers to the temporal relationship among the tasks of a process. The workflow
description languages and the mechanisms to control the enactment of a case must have provisions

108 CHAPTER 4 Cloud Computing: Applications and Paradigms

t1

t2

t3

t4

time

BtaskAtask

r

q

A

B E

CD

G

F

(a) (b)
FIGURE 4.2

(a) A process description that violates the liveness requirement. If task C is chosen after completion of B,
the process will terminate after executing task G; if D is chosen, then F will never be instantiated, because
it requires the completion of both C and E . The process will never terminate, because G requires completion
of both D and F . (b) Tasks A and B need exclusive access to two resources r and q, and a deadlock may take
place if the following sequence of events occurs. At time t1 task A acquires r , at time t2 task B acquires
q and continues to run; then at time t3 task B attempts to acquire r and it blocks because r is under the
control of A. Task A continues to run and at time t4 attempts to acquire q and it blocks because q is under
the control of B.

to support these temporal relationships. Workflow patterns are analyzed in [1,382]. These patterns
are classified in several categories: basic, advanced branching and synchronization, structural, state-
based, cancellation, and patterns involving multiple instances. The basic workflow patterns illustrated
in Figure 4.3 are:

• The sequence pattern occurs when several tasks have to be scheduled one after the completion of
the other [see Figure 4.3(a)].

• The AND split pattern requires several tasks to be executed concurrently. Both tasks B and C are
activated when task A terminates [see Figure 4.3(b)]. In case of an explicit AND split, the activity
graph has a routing node and all activities connected to the routing node are activated as soon as the
flow of control reaches the routing node. In the case of an implicit AND split, activities are connected
directly and conditions can be associated with branches linking an activity with the next ones. Only
when the conditions associated with a branch are true are the tasks activated.

• The synchronization pattern requires several concurrent activities to terminate before an activity can
start. In our example, task C can only start after both tasks A and B terminate [see Figure 4.3(c)].

• The XOR split requires a decision; after the completion of task A, either B or C can be activated
[see Figure 4.3(d)].

4.4 Workflows: Coordination of Multiple Activities 109

A B C A

B

C

AND
A

B
AND C

A

B
XOR CA

B

C

XOR A

B

C

OR

A

B

C

AND DXOR A

B

C

AND DDIS

A

B

CAND

D

2/3 E
A

B

C

XOR X

(a) (b) (c)

(d)

(g) (h)

(i) (j)

(e) (f)

FIGURE 4.3

Basic workflow patterns. (a) Sequence. (b) AND split. (c) Synchronization. (d) XOR split. (e) XOR merge. (f)
OR split. (g) Multiple merge. (h) Discriminator. (i) N out of M join. (j) Deferred choice.

• In the XOR join, several alternatives are merged into one. In our example, task C is enabled when
either A or B terminates [see Figure 4.3(e)].

• The OR split pattern is a construct to choose multiple alternatives out of a set. In our example, after
completion of task A, one could activate either B or C , or both [see Figure 4.3(f)].

• The multiple merge construct allows multiple activations of a task and does not require synchroniza-
tion after the execution of concurrent tasks. Once A terminates, tasks B and C execute concurrently

110 CHAPTER 4 Cloud Computing: Applications and Paradigms

[see Figure 4.3(g)]. When the first of them, say, B, terminates, task D is activated; then when C
terminates, D is activated again.

• The discriminator pattern waits for a number of incoming branches to complete before activating
the subsequent activity [see Figure 4.3(h)]; then it waits for the remaining branches to finish without
taking any action until all of them have terminated. Next, it resets itself.

• The N out of M join construct provides a barrier synchronization. Assuming that M > N tasks run
concurrently, N of them have to reach the barrier before the next task is enabled. In our example,
any two out of the three tasks A, B, and C have to finish before E is enabled [see Figure 4.3(i)].

• The deferred choice pattern is similar to the XOR split, but this time the choice is not made explicitly
and the run-time environment decides what branch to take [see Figure 4.3(j)].

Next we discuss the reachability of the goal state and we consider the following elements:

• A system �, an initial state of the system, σini tial , and a goal state, σgoal .
• A process group P = {p1, p2, . . . , pn}; each process pi in the process group is characterized by a

set of preconditions, pre(pi), post-conditions, post(pi), and attributes, atr(pi).
• A workflow described by a directed activity graph A or by a procedure � capable of constructing

A given the tuple < P, σini tial , σgoal >. The nodes of A are processes in P and the edges define
precedence relations among processes. Pi → Pj implies that pre(p j) ⊂ post(pi).

• A set of constraints C = {C1, C2, . . . , Cm}.
The coordination problem for system � in state σini tial is to reach state σgoal as a result of post-

conditions of some process Pf inal ∈ P subject to constraints Ci ∈ C. Here σini tial enables the precon-
ditions of some process Pinitial ∈ P . Informally, this means that a chain of processes exists such that
the post-conditions of one process are preconditions of the next process in the chain.

Generally, the preconditions of a process are either the conditions and/or the events that trigger the
execution of the process or the data the process expects as input; the post-conditions are the results
produced by the process. The attributes of a process describe special requirements or properties of the
process.

Some workflows are static. The activity graph does not change during the enactment of a case.
Dynamic workflows are those that allow the activity graph to be modified during the enactment of
a case. Some of the more difficult questions encountered in dynamic workflow management refer to
(i) how to integrate workflow and resource management and guarantee optimality or near optimality
of cost functions for individual cases; (ii) how to guarantee consistency after a change in a workflow;
and (iii) how to create a dynamic workflow. Static workflows can be described in WFDL (the workflow
definition language), but dynamic workflows need a more flexible approach.

We distinguish two basic models for the mechanics of workflow enactment:

1. Strong coordination models, whereby the process group P executes under the supervision of a
coordinator process or processes. A coordinator process acts as an enactment engine and ensures a
seamless transition from one process to another in the activity graph.

2. Weak coordination models, whereby there is no supervisory process.

4.4 Workflows: Coordination of Multiple Activities 111

In the first case, we may deploy a hierarchical coordination scheme with several levels of coordina-
tors. A supervisor at level i in a hierarchical scheme with i + 1 levels coordinates a subset of processes
in the process group. A supervisor at level i − 1 coordinates a number of supervisors at level i and the
root provides global coordination. Such a hierarchical coordination scheme may be used to reduce the
communication overhead; a coordinator and the processes it supervises may be colocated.

The most important feature of this coordination model is the ability to support dynamic workflows.
The coordinator or the global coordinator may respond to a request to modify the workflow by first
stopping all the threads of control in a consistent state, then investigating the feasibility of the requested
changes, and finally, implementing feasible changes.

Weak coordination models are based on peer-to-peer communication between processes in the pro-
cess group by means of a societal service such as a tuple space. Once a process pi ∈ P finishes, it
deposits a token, including possibly a subset of its post-conditions, post(pi), in a tuple space. The
consumer process p j is expected to visit the tuple space at some point in time, examine the tokens
left by its ancestors in the activity graph, and, if its preconditions pre(p j) are satisfied, commence the
execution. This approach requires individual processes to either have a copy of the activity graph or
some timetable to visit the tuple space. An alternative approach is using an active space, a tuple space
augmented with the ability to generate an event awakening the consumer of a token.

There are similarities and some differences between workflows of traditional transaction-oriented
systems and cloud workflows. The similarities are mostly at the modeling level, whereas the differences
affect the mechanisms used to implement workflow management systems. Some of the more subtle
differences between the two are:

• The emphasis in a transactional model is placed on the contractual aspect of a transaction; in a
workflow the enactment of a case is sometimes based on a “best-effort” model whereby the agents
involved will do their best to attain the goal state but there is no guarantee of success.

• A critical aspect of the transactional model in database applications is maintaining a consistent state
of the database; however, a cloud is an open system, and thus its state is considerably more difficult
to define.

• The database transactions are typically short-lived; the tasks of a cloud workflow could be long-
lasting.

• A database transaction consists of a set of well-defined actions that are unlikely to be altered during
the execution of the transaction. However, the process description of a cloud workflow may change
during the lifetime of a case.

• The individual tasks of a cloud workflow may not exhibit the traditional properties of database
transactions. For example, consider durability: At any instance of time, before reaching the goal
state, a workflow may roll back to some previously encountered state and continue from there on an
entirely different path. A task of a workflow could be either reversible or irreversible. Sometimes,
paying a penalty for reversing an action is more profitable in the long run than continuing on a wrong
path.

• Resource allocation is a critical aspect of the workflow enactment on a cloud without an immediate
correspondent for database transactions.

The relatively simple coordination model discussed next is often used in cloud computing.

112 CHAPTER 4 Cloud Computing: Applications and Paradigms

4.5 Coordination based on a state machine model: The ZooKeeper
Cloud computing elasticity requires the ability to distribute computations and data across multiple
systems. Coordination among these systems is one of the critical functions to be exercised in a distributed
environment. The coordination model depends on the specific task, such as coordination of data storage,
orchestration of multiple activities, blocking an activity until an event occurs, reaching consensus for
the next action, or recovery after an error.

The entities to be coordinated could be processes running on a set of cloud servers or even running
on multiple clouds. Servers running critical tasks are often replicated, so when one primary server fails,
a backup automatically continues the execution. This is only possible if the backup is in a hot standby
mode – in other words, the standby server shares the same state at all times with the primary.

For example, in the distributed data store model discussed in Section 3.5, the access to data is
mitigated by a proxy. This proxy is a single point of failure; thus, an architecture with multiple proxies
is desirable. These proxies should be in the same state so that, whenever one of them fails, the client
could seamlessly continue to access the data using another proxy.

Consider now an advertising service that involves a large number of servers in a cloud. The advertising
service runs on a number of servers specialized for tasks such as database access, monitoring, accounting,
event logging, installers, customer dashboards,5 advertising campaign planners, scenario testing, and
so on. A solution to coordinate these activities is through configuration files shared by all systems.
When the service starts or after a system failure, all servers use the configuration file to coordinate their
actions. This solution is static. Any change requires an update and redistribution of the configuration
file. Moreover, in case of a system failure the configuration file does not allow recovery from the state
of each server prior to the system crash, which is a more desirable alternative.

A solution for the proxy coordination problem is to consider a proxy as a deterministic finite state
machine that performs the commands sent by clients in some sequence. The proxy has thus a definite
state and, when a command is received, it transitions to another state. When P proxies are involved,
all of them must be synchronized and must execute the same sequence of state machine commands;
this can be ensured if all proxies implement a version of the Paxos consensus algorithm described in
Section 2.11.

ZooKeeper is a distributed coordination service based on this model. The high-throughput and
low-latency service is used for coordination in large-scale distributed systems. The open-source soft-
ware is written in Java and has bindings for Java and C. Information about the project is available at
http://zookeeper.apache.org/.

The ZooKeeper software must first be downloaded and installed on several servers; then clients can
connect to any one of these servers and access the coordination service. The service is available as long
as the majority of servers in the pack are available.

The organization of the service is shown in Figure 4.4. The servers in the pack communicate with
one another and elect a leader. A database is replicated on each one of them and the consistency of the

5A customer dashboard provides access to key customer information, such as contact name and account number, in an area
of the screen that remains persistent as the user navigates through multiple Web pages.

4.5 Coordination Based on a State Machine Model: The ZooKeeper 113

(c)

(a)

(b)
READ WRITEWRITE

Write

FIGURE 4.4

The ZooKeeper coordination service. (a) The service provides a single system image. Clients can connect to
any server in the pack. (b) Functional model of the ZooKeeper service. The replicated database is accessed
directly by read commands; write commands involve more intricate processing based on atomic broadcast.
(c) Processing a write command: (1) A server receiving the command from a client forwards the command
to the leader; (2) the leader uses atomic broadcast to reach consensus among all followers.

replicas is maintained. Figure 4.4(a) shows that the service provides a single system image. A client
can connect to any server of the pack.

A client uses TCP to connect to a single server. Through the TCP connection a client sends requests
and receives responses and watches events. A client synchronizes its clock with the server. If the server
fails, the TCP connections of all clients connected to it time out and the clients detect the failure of the
server and connect to other servers.

Figures 4.4(b) and (c) show that a read operation directed to any server in the pack returns the same
result, whereas the processing of a write operation is more involved; the servers elect a leader, and
any follower receiving a request from one of the clients connected to it forwards it to the leader. The
leader uses atomic broadcast to reach consensus. When the leader fails, the servers elect a new leader.

The system is organized as a shared hierarchical namespace similar to the organization of a file
system. A name is a sequence of path elements separated by a backslash. Every name in Zookeper’s
namespace is identified by a unique path (see Figure 4.5).

In ZooKeeper the znodes, the equivalent of the inodes of a file system, can have data associated with
them. Indeed, the system is designed to store state information. The data in each node includes version

114 CHAPTER 4 Cloud Computing: Applications and Paradigms

/

/a /b /c

/a/1 /a/2 /b/1 /c/1 /c/2

FIGURE 4.5

ZooKeeper is organized as a shared hierarchical namespace in which a name is a sequence of path elements
separated by a backslash.

numbers for the data, changes of ACLs,6 and time stamps. A client can set a watch on a znode and
receive a notification when the znode changes. This organization allows coordinated updates. The data
retrieved by a client also contains a version number. Each update is stamped with a number that reflects
the order of the transition.

The data stored in each node is read and written atomically. A read returns all the data stored in
a znode, whereas a write replaces all the data in the znode. Unlike in a file system, Zookeeper data,
the image of the state, is stored in the server memory. Updates are logged to disk for recoverability, and
writes are serialized to disk before they are applied to the in-memory database that contains the entire
tree. The ZooKeeper service guarantees:

1. Atomicity. A transaction either completes or fails.
2. Sequential consistency of updates. Updates are applied strictly in the order in which they are received.
3. Single system image for the clients. A client receives the same response regardless of the server it

connects to.
4. Persistence of updates. Once applied, an update persists until it is overwritten by a client.
5. Reliability. The system is guaranteed to function correctly as long as the majority of servers function

correctly.

To reduce the response time, read requests are serviced from the local replica of the server that is
connected to the client. When the leader receives a write request, it determines the state of the system
where the write will be applied and then it transforms the state into a transaction that captures this
new state.

The messaging layer is responsible for the election of a new leader when the current leader fails. The
messaging protocol uses packets (sequences of bytes sent through a FIFO channel), proposals (units
of agreement), and messages (sequences of bytes atomically broadcast to all servers). A message is
included in a proposal and it is agreed on before it is delivered. Proposals are agreed on by exchanging
packets with a quorum of servers, as required by the Paxos algorithm.

6An access control list (ACL) is a list of pairs (subject,value) that defines the list of access rights to an object; for example,
read, write, and execute permissions for a file.

4.6 The MapReduce Programming Model 115

An atomic messaging system keeps all the servers in a pack in synch. This system guarantees (a)
reliable delivery: if message m is delivered to one server, it will be eventually delivered to all servers;
(b) total order: if message m is delivered before message n to one server, m will be delivered before n
to all servers; and (c) causal order: if message n is sent after m has been delivered by the sender of n,
then m must be ordered before n.

The application programming interface (API) to the ZooKeeper service is very simple and consists
of seven operations:

• create – add a node at a given location on the tree.
• delete – delete a node.
• get data – read data from a node.
• set data – write data to a node.
• get children – retrieve a list of the children of the node.
• synch – wait for the data to propagate.

The system also supports the creation of ephemeral nodes, which are nodes that are created when a
session starts and deleted when the session ends.

This brief description shows that the ZooKeeper service supports the finite state machine model of
coordination. In this case a znode stores the state. The ZooKeeper service can be used to implement
higher-level operations such as group membership, synchronization, and so on. The system is used by
Yahoo!’s Message Broker and by several other applications.

4.6 The MapReduce programming model
A main advantage of cloud computing is elasticity – the ability to use as many servers as necessary to
optimally respond to the cost and the timing constraints of an application. In the case of transaction
processing systems, typically a front-end system distributes the incoming transactions to a number
of back-end systems and attempts to balance the load among them. As the workload increases, new
back-end systems are added to the pool.

For data-intensive batch applications, partitioning the workload is not always trivial. Only in some
cases can the data be partitioned into blocks of arbitrary size and processed in parallel by servers in the
cloud. We distinguish two types of divisible workloads:

• Modularly divisible. The workload partitioning is defined a priori.
• Arbitrarily divisible. The workload can be partitioned into an arbitrarily large number of smaller

workloads of equal or very close size.

Many realistic applications in physics, biology, and other areas of computational science and engineering
obey the arbitrarily divisible load-sharing model. The Divisible Load Theory (DLT) is analyzed in the
literature (see Section 4.12).

MapReduce is based on a very simple idea for parallel processing of data-intensive applications
supporting arbitrarily divisible load sharing. First, split the data into blocks, assign each block to
an instance or process, and run these instances in parallel. Once all the instances have finished, the
computations assigned to them start the second phase: Merge the partial results produced by individual

116 CHAPTER 4 Cloud Computing: Applications and Paradigms

instances. The so-called same program, multiple data (SPMD) paradigm, used since the early days of
parallel computing, is based on the same idea but assumes that a master instance partitions the data and
gathers the partial results.

MapReduce is a programming model inspired by the Map and the Reduce primitives of the LISP
programming language. It was conceived for processing and generating large data sets on computing
clusters [100]. As a result of the computation, a set of input <key, value> pairs is transformed into a
set of output <key, value> pairs.

Numerous applications can be easily implemented using this model. For example, one can pro-
cess logs of Web page requests and count the URL access frequency. The Map function outputs the
pairs <U RL, 1> and the Reduce function produces the pairs <U RL, totalcount>. Another trivial
example is distributed sort when the map function extracts the key from each record and produces a
<key, record> pair and the Reduce function outputs these pairs unchanged. The following example
[100] shows the two user-defined functions for an application that counts the number of occurrences of
each word in a set of documents.

map(String key, String value):
//key: document name; value: document contents
for each word w in value:
EmitIntermediate (w, "1");

reduce (String key, Iterator values):
// key: a word; values: a list of counts
int result = 0;
for each v in values:
result += ParseInt (v);
Emit (AsString (result));

Call M and R the number of Map and Reduce tasks, respectively, and N the number of systems used
by the MapReduce. When a user program invokes the MapReduce function, the following sequence of
actions take place (see Figure 4.6):

1. The run-time library splits the input files into M splits of 16 to 64 MB each, identifies a number N of
systems to run, and starts multiple copies of the program, one of the system being a master and the
others workers. The master assigns to each idle system either a Map or a Reduce task. The master
makes O(M + R) scheduling decisions and keeps O(M × R) worker state vectors in memory. These
considerations limit the size of M and R; at the same time, efficiency considerations require that
M, R � N .

2. A worker being assigned a Map task reads the corresponding input split, parses <key, value> pairs,
and passes each pair to a user-defined Map function. The intermediate <key, value> pairs produced
by the Map function are buffered in memory before being written to a local disk and partitioned into
R regions by the partitioning function.

3. The locations of these buffered pairs on the local disk are passed back to the master, who is responsible
for forwarding these locations to the Reduce workers. A Reduce worker uses remote procedure
calls to read the buffered data from the local disks of the Map workers; after reading all the

4.6 The MapReduce Programming Model 117

Segment 1

Segment 1Segment 2

Segment 3

Segment M

Map
instance 1

Map
instance 2

Map
instance 3

Map
instance M

Local disk

Local disk

Local disk

Local disk

Master instance

Application

1

2

1

3 4

1

Reduce
instance 1

Reduce
instance 2

Reduce
instance R

Map phase Reduce phase

Shared
storage

Shared
storage

5 6

Input data

7

FIGURE 4.6

The MapReduce philosophy. (1) An application starts a master instance and M worker instances for the Map
phase and, later, R worker instances for the Reduce phase. (2) The master partitions the input data in M
segments. (3) Each Map instance reads its input data segment and processes the data. (4) The results of
the processing are stored on the local disks of the servers where the Map instances run. (5) When all Map
instances have finished processing their data, the R Reduce instances read the results of the first phase
and merge the partial results. (6) The final results are written by the Reduce instances to a shared storage
server. (7) The master instance monitors the Reduce instances and, when all of them report task completion,
the application is terminated.

intermediate data, it sorts it by the intermediate keys. For each unique intermediate key, the key
and the corresponding set of intermediate values are passed to a user-defined Reduce function. The
output of the Reduce function is appended to a final output file.

4. When all Map and Reduce tasks have been completed, the master wakes up the user program.

The system is fault tolerant. For each Map and Reduce task, the master stores the state (idle, in-
progress, or completed) and the identity of the worker machine. The master pings every worker period-
ically and marks the worker as failed if it does not respond. A task in progress on a failed worker is reset
to idle and becomes eligible for rescheduling. The master writes periodic checkpoints of its control data

118 CHAPTER 4 Cloud Computing: Applications and Paradigms

structures and, if the task fails, it can be restarted from the last checkpoint. The data is stored using
GFS, the Google File System, discussed in Section 8.5.

An environment for experimenting with MapReduce is described in [100]: The computers are typ-
ically dual-processor x86 running Linux, with 2–4 GB of memory per machine and commodity net-
working hardware typically 100–1,000 Mbps. A cluster consists of hundreds or thousands of machines.
Data is stored on IDE7 disks attached directly to individual machines. The file system uses replication
to provide availability and reliability with unreliable hardware. To minimize network bandwidth, the
input data is stored on the local disks of each system.

4.7 A case study: The GrepTheWeb application
An application called GrepTheWeb, discussed in [360], is now in production at Amazon. We use it to
illustrate the power and appeal of cloud computing. The application allows a user to define a regular
expression and search the Web for records that match it. GrepTheWeb is analogous to the Unix grep
command used to search a file for a given regular expression.

This application performs a search of a very large set of records, attempting to identify records that
satisfy a regular expression. The source of this search is a collection of document URLs produced by
the Alexa Web Search, a software system that crawls the Web every night. The inputs to the applications
are a regular expression and the large data set produced by the Web-crawling software; the output is the
set of records that satisfy the expression. The user is able to interact with the application and get the
current status [see Figure 4.7(a)].

The application uses message passing to trigger the activities of multiple controller threads that launch
the application, initiate processing, shut down the system, and create billing records. GrepTheWeb uses
Hadoop MapReduce, an open-source software package that splits a large data set into chunks, distributes
them across multiple systems, launches the processing, and, when the processing is complete, aggregates
the outputs from different systems into a final result. Apache Hadoop is a software library for distributed
processing of large data sets across clusters of computers using a simple programming model.

The details of the workflow of GrepTheWeb are captured in Figure 4.7(b) and consist of the following
steps [360]:

1. The startup phase. Creates several queues – launch, monitor, billing, and shutdown queues. Starts
the corresponding controller threads. Each thread periodically polls its input queue and, when a
message is available, retrieves the message, parses it, and takes the required actions.

2. The processing phase. This phase is triggered by a StartGrep user request; then a launch message
is enqueued in the launch queue. The launch controller thread picks up the message and executes the
launch task; then, it updates the status and time stamps in the Amazon Simple DB domain. Finally,
it enqueues a message in the monitor queue and deletes the message from the launch queue. The
processing phase consists of the following steps:

7Integrated Drive Electronics (IDE) is an interface for connecting disk drives. The drive controller is integrated into the drive,
as opposed to a separate controller on or connected to the motherboard.

4.7 A Case Study: The GrepTheWeb Application 119

SQS

Controller

EC2
Cluster

Input records

Regular
expression

Output
Status S3Simple

DB

Status
DB

Launch
controller

Monitor
controller

Shutdown
controller

Billing
controller

Billing
service

Launch
queue

Monitor
queue

Billing
queue

Shutdown
queue

Amazon SimpleDB

Output

Input

Amazon S3

HDHS

Hadoop Cluster on
Amazon SE2

Get file

Put file

Controller

(a)

(b)
FIGURE 4.7

The organization of the GrepTheWeb application. The application uses the Hadoop MapReduce software and
four Amazon services: EC2, Simple DB, S3, and SQS. (a) The simplified workflow showing the two inputs,
the regular expression and the input records generated by the Web crawler. A third type of input is the
user commands to report the current status and to terminate the processing. (b) The detailed workflow; the
system is based on message passing between several queues; four controller threads periodically poll their
associated input queues, retrieve messages, and carry out the required actions.

120 CHAPTER 4 Cloud Computing: Applications and Paradigms

a. The launch task starts Amazon EC2 instances. It uses a Java Runtime Environment preinstalled
Amazon Machine Image (AMI), deploys required Hadoop libraries, and starts a Hadoop Job
(run Map/Reduce tasks).

b. Hadoop runs map tasks on Amazon EC2 slave nodes in parallel. A map task takes files from
Amazon S3, runs a regular expression, and writes the match results locally, along with a descrip-
tion of up to five matches. Then the combine/reduce task combines and sorts the results and
consolidates the output.

c. Final results are stored on Amazon S3 in the output bucket.

3. The monitoring phase. The monitor controller thread retrieves the message left at the beginning of
the processing phase, validates the status/error in Amazon Simple DB, and executes the monitor task.
It updates the status in the Amazon Simple DB domain and enqueues messages in the shutdown and
billing queues. The monitor task checks for the Hadoop status periodically and updates the Simple
DB items with status/error and the Amazon S3 output file. Finally, it deletes the message from the
monitor queue when the processing is completed.

4. The shutdown phase. The shutdown controller thread retrieves the message from the shutdown queue
and executes the shutdown task, which updates the status and time stamps in the Amazon Simple DB
domain. Finally, it deletes the message from the shutdown queue after processing. The shutdown
phase consists of the following steps:

a. The shutdown task kills the Hadoop processes, terminates the EC2 instances after getting EC2
topology information from Amazon Simple DB, and disposes of the infrastructure.

b. The billing task gets the EC2 topology information, Simple DB usage, and S3 file and query
input, calculates the charges, and passes the information to the billing service.

5. The cleanup phase. Archives the Simple DB data with user info.
6. User interactions with the system. Get the status and output results. The GetStatus is applied to the

service endpoint to get the status of the overall system (all controllers and Hadoop) and download
the filtered results from Amazon S3 after completion.

To optimize the end-to-end transfer rates in the S3 storage system, multiple files are bundled up and
stored as S3 objects. Another performance optimization is to run a script and sort the keys and the URL
pointers and upload them in sorted order to S3. In addition, multiple fetch threads are started in order
to fetch the objects.

This application illustrates the means to create an on-demand infrastructure and run it on a massively
distributed system in a manner that allows it to run in parallel and scale up and down based on the
number of users and the problem size.

4.8 Clouds for science and engineering
For more than two thousand years of human history, science was empirical. Several hundred years ago
theoretical methods based on models and generalization were introduced, allowing substantial progress
in human knowledge. In the last few decades, we have witnessed the explosion of computational science
based on the simulation of complex phenomena.

4.9 High-Performance Computing on a Cloud 121

In a talk delivered in 2007 and posted on his Web site just before he went missing in January
2007, computer scientist Jim Gray discussed eScience as a transformative scientific method [163].
Today, eScience unifies experiment, theory, and simulation; data captured from measuring instruments
or generated by simulations are processed by software systems, and data and knowledge are stored by
computer systems and analyzed using statistical packages.

The generic problems in virtually all areas of science are:

• Collecting experimental data.
• Managing very large volumes of data.
• Building and executing models.
• Integrating data and literature.
• Documenting experiments.
• Sharing the data with others; data preservation for long periods of time.

All these activities require powerful computing systems.
A typical example of a problem faced by agencies and research groups is data discovery in large

scientific data sets. Examples of such large collections are the biomedical and genomic data at NCBI,8

the astrophysics data at NASA,9 or the atmospheric data at NOAA10 and NCAR.11

The process of online data discovery can be viewed as an ensemble of several phases [282]: (i)
recognition of the information problem; (ii) generation of search queries using one or more search
engines; (iii) evaluation of the search results; (iv) evaluation of the Web documents; and (v) comparison
of information from different sources. The Web search technology allows scientists to discover text
documents related to such data, but the binary encoding of many of the documents poses serious
challenges.

Metadata is used to describe digital data and provides an invaluable aid for discovering useful
information in a scientific data set. A recent paper [282] describes a system for data discovery that
supports automated fine-grained metadata extraction and summarization schemes for browsing large
data sets and is extensible to different scientific domains. The system, called Glean, is designed to run
on a computer cluster or on a cloud; its run-time system supports two computational models, one based
on MapReduce and the other on graph-based orchestration.

4.9 High-performance computing on a cloud
A recent paper [179] describes the set of applications used at the National Energy Research Scientific
Computing Center (NERSC) and presents the results of a comparative benchmark of EC2 and three
supercomputers. NERSC is located at Lawrence Berkeley National Laboratory and serves a diverse
community of scientists; it has some 3,000 researchers and involves 400 projects based on some 600
codes. Some of the codes used are:

8NCBI is the National Center for Biotechnology Information; www.ncbi.nlm.nih.gov.
9NASA is the National Aeronautics and Space Administration; www.nasa.gov.

10NOAA is the National Oceanic and Atmospheric Administration; www.noaa.gov.
11NCAR is the National Center for Atmospheric Research.

122 CHAPTER 4 Cloud Computing: Applications and Paradigms

Community Atmosphere Mode (CAM), the atmospheric component of Community Climate System
Model (CCSM), is used for weather and climate modeling.12 The code developed at NCAR uses
two two-dimensional domain decompositions – one for the dynamics and the other for remapping.
The first is decomposed over latitude and vertical level; the second is decomposed over longi-
tude/latitude. The program is communication-intensive; on-node/processor data movement and
relatively long MPI13 messages that stress the interconnect point-to-point bandwidth are used to
move data between the two decompositions.

General Atomic and Molecular Electronic Structure System (GAMESS) is used for ab initio quan-
tum chemistry calculations. The code, developed by the Gordon Research Group at the U.S. Depart-
ment of Energy’s Ames Lab at Iowa State University, has its own communication library, the Dis-
tributed Data Interface (DDI), and is based on the same program multiple data (SPMD) execution
model. DDI presents the abstraction of a global shared memory with one-sided data transfers, even
on systems with physically distributed memory. On the cluster systems at NERSC the program uses
socket communication; on the Cray XT4 the DDI uses MPI and only one-half of the processors
compute, whereas the other half are data movers. The program is memory- and communication-
intensive.

Gyrokinetic14 (GTC) is a code for fusion research.15 It is a self-consistent, gyrokinetic tri-
dimensional particle-in-cell (PIC)16 code with a nonspectral Poisson solver. It uses a grid that
follows the field lines as they twist around a toroidal geometry representing a magnetically con-
fined toroidal fusion plasma. The version of GTC used at NERSC uses a fixed, one-dimensional
domain decomposition with 64 domains and 64 MPI tasks. Communication is dominated by nearest-
neighbor exchanges that are bandwidth-bound. The most computationally intensive parts of GTC
involve gather/deposition of charge on the grid and particle “push” steps. The code is memory-
intensive because the charge deposition uses indirect addressing.

Integrated Map and Particle Accelerator Tracking Time (IMPACT-T) is a code for the prediction and
performance enhancement of accelerators. It models the arbitrary overlap of fields from beamline
elements and uses a parallel, relativistic PIC method with a spectral integrated Green function solver.
This object-oriented Fortran90 code uses a two-dimensional domain decomposition in the y−z
directions and dynamic load balancing based on the domains. Hockney’s Fast Fourier Transform
(FFT) algorithm is used to solve Poisson’s equation with open boundary conditions. The code is
sensitive to the memory bandwidth and MPI collective performance.

12See www.nersc.gov/research-and-development/benchmarking-and-workload-
characterization.
13Message Passing Interface (MPI) is a communication library based on a standard for a portable message-passing system.
14The trajectory of charged particles in a magnetic field is a helix that winds around the field line. It can be decomposed
into a relatively slow motion of the guiding center along the field line and a fast circular motion called cyclotronic motion.
Gyrokinetics describes the evolution of the particles without taking into account the circular motion.
15See www.scidacreview.org/0601/html/news4.html.
16PIC is a technique to solve a certain class of partial differential equations. Individual particles (or fluid elements) in a
Lagrangian frame are tracked in continuous phase space, whereas moments of the distribution such as densities and currents
are computed simultaneously on Eulerian (stationary) mesh points.

4.9 High-Performance Computing on a Cloud 123

MAESTRO is a low Mach number hydrodynamics code for simulating astrophysical flows.17 Its
integration scheme is embedded in an adaptive mesh refinement algorithm based on a hierarchical
system of rectangular, nonoverlapping grid patches at multiple levels with different resolutions;
it uses a multigrid solver. Parallelization is via a tridimensional domain decomposition using a
coarse-grained distribution strategy to balance the load and minimize communication costs. The
communication topology tends to stress simple topology interconnects. The code has a very low
computational intensity, it stresses memory latency, and the implicit solver stresses global commu-
nications. The message sizes range from short to relatively moderate.

MIMD Lattice Computation (MILC) is a Quantum Chromo Dynamics (QCD) code used to study
“strong” interactions binding quarks into protons and neutrons and holding them together in the
nucleus.18 The algorithm discretizes the space and evaluates field variables on sites and links of a
regular hypercube lattice in four-dimensional space-time. The integration of an equation of motion
for hundreds or thousands of time steps requires inverting a large, sparse matrix. The Conjugate
Gradient (CG) method is used to solve a sparse, nearly singular matrix problem. Many CG iteration
steps are required for convergence; the inversion translates into tridimensional complex matrix-
vector multiplications. Each multiplication requires a dot product of three pairs of tridimensional
complex vectors; a dot product consists of five multiply/add operations and one multiply. The
MIMD computational model is based on a four-dimensional domain decomposition. Each task
exchanges data with its eight nearest neighbors and is involved in the all-reduce calls with very
small payload as part of the CG algorithm. The algorithm requires gather operations from widely
separated locations in memory. The code is highly memory- and computational-intensive and it is
heavily dependent on prefetching.

PARAllel Total Energy Code (PARATEC) is a quantum mechanics code that performs ab initio
total energy calculations using pseudo-potentials, a plane wave basis set, and an all-band (uncon-
strained) Conjugate Gradient (CG) approach. Parallel three-dimensional FFTs transform the wave
functions between real and Fourier space. The FFT dominates the run-time; the code uses MPI
and is communication-intensive. The code uses mostly point-to-point short messages. The code
parallelizes over grid points, thereby achieving a fine-grain level of parallelism. The BLAS3 and
one-dimensional FFT use optimized libraries (e.g., Intel’s MKL or AMD’s ACML), which results
in high cache reuse and a high percentage of per-processor peak performance.

The authors of [179] use the High-Performance Computing Challenge (HPCC) benchmark to com-
pare the performance of EC2 with the performance of three large systems at NERSC. HPCC19 is a
suite of seven synthetic benchmarks: three targeted synthetic benchmarks that quantify basic system
parameters that characterize individually the computation and communication performance and four
complex synthetic benchmarks that combine computation and communication and can be considered
simple proxy applications. These benchmarks are:

17See www.astro.sunysb.edu/mzingale/Maestro/.
18See physics.indiana.edu/sg/milc.html.
19For more information see www.novellshareware.com/info/hpc-challenge.html.

124 CHAPTER 4 Cloud Computing: Applications and Paradigms

• DGEMM.20 The benchmark measures the floating-point performance of a processor/core. The mem-
ory bandwidth does little to affect the results, since the code is cache-friendly. Thus, the results of
the benchmark are close to the theoretical peak performance of the processor.

• STREAM.21 The benchmark measures the memory bandwidth.
• The network latency benchmark.
• The network bandwidth benchmark.
• HPL.22 A software package that solves a (random) dense linear system in double precision arithmetic

on distributed-memory computers. It is a portable and freely available implementation of the High-
Performance Computing Linpack Benchmark.

• FFTE. Measures the floating-point rate of execution of double precision complex one-dimensional
Discrete Fourier Transform (DFT).

• PTRANS. Parallel matrix transpose exercises the communications whereby pairs of processors
communicate with each other simultaneously. It is a useful test of the total communications capacity
of the network.

• RandomAccess. Measures the rate of integer random updates of memory (GUPS).

The systems used for the comparison with cloud computing are:

Carver. A 400-node IBM iDataPlex cluster with quad-core Intel Nehalem processors running at
2.67 GHz and with 24 GB of RAM (3 GB/core). Each node has two sockets; a single Quad Data
Rate (QDR) IB link connects each node to a network that is locally a fat tree with a global two-
dimensional mesh. The codes were compiled with the Portland Group suite version 10.0 and Open
MPI version 1.4.1.
Franklin. A 9,660-node Cray XT4; each node has a single quad-core 2.3 GHz AMD Opteron
Budapest processor with 8 GB of RAM (2 GB/core). Each processor is connected through a
6.4 GB/s bidirectional HyperTransport interface to the interconnect via a Cray SeaStar-2 ASIC.
The SeaStar routing chips are interconnected in a tridimensional torus topology in which each
node has a direct link to its six nearest neighbors. Codes were compiled with the Pathscale or the
Portland Group suite version 9.0.4.
Lawrencium. A 198-node (1,584 core) Linux cluster; a compute node is a Dell Poweredge 1950
server with two Intel Xeon quad-core 64-bit, 2.66-GHz Harpertown processors with 16 GB of RAM
(2 GB/core). A compute node is connected to a Dual Data Rate InfiniBand network configured as a
fat tree with a 3:1 blocking factor. Codes were compiled using Intel 10.0.018 and Open MPI 1.3.3.

The virtual cluster at Amazon had four EC2 Compute Units (CUs), two virtual cores with two
CUs each, and 7.5 GB of memory (an m1.large instance in Amazon parlance). A Compute Unit
is approximately equivalent to a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor. The nodes are
connected with gigabit Ethernet. The binaries were compiled on Lawrencium. The results reported in
[179] are summarized in Table 4.1.

20For more details see https://computecanada.org/?pageId=138.
21For more details see www.streambench.org/.
22For more details see http://netlib.org/benchmark/hpl/.

4.10 Cloud Computing for Biology Research 125

Table 4.1 The results of the measurements reported in [179].

System DGEMM STREAM Latency Bndw HPL FFTE PTRANS RandAcc

Gflops GB/s µs GB/S Tflops Gflops GB/s GUP/s

Carver 10.2 4.4 2.1 3.4 0.56 21.99 9.35 0.044
Franklin 8.4 2.3 7.8 1.6 0.47 14.24 2.63 0.061
Lawrencium 9.6 0.7 4.1 1.2 0.46 9.12 1.34 0.013
EC2 4.6 1.7 145 0.06 0.07 1.09 0.29 0.004

The results in Table 4.1 give us some ideas about the characteristics of scientific applications likely
to run efficiently on the cloud. Communication-intensive applications will be affected by the increased
latency (more than 70 times larger then Carver) and lower bandwidth (more than 70 times smaller than
Carver).

4.10 Cloud computing for biology research
Biology, one of the scientific fields that needs vast amounts of computing power, was one of the first
to take advantage of cloud computing. Molecular dynamics computations are CPU-intensive, whereas
protein alignment is data-intensive.

An experiment carried out by a group from Microsoft Research illustrates the importance of cloud
computing for biology research [223]. The authors carried out an “all-by-all” comparison to identify
the interrelationship of the 10 million protein sequences (4.2 GB size) in the National Center for
Biotechnology Information (NCBI) nonredundant protein database using AzureBLAST, a version of the
BLAST 23 program running on the Azure platform [223].

Azure offers VMs with four levels of computing power, depending on the number of cores: small
(1 core), medium (2 cores), large (8 cores), and extra large (>8 cores). The experiment used 8 core
CPUs with 14 GB RAM and a 2 TB local disk. It was estimated that the computation would take six to
seven CPU-years; thus, the experiment was allocated 3,700 weighted instances or 475 extra-large VMs
from three data centers. Each data center hosted three AzureBLAST deployments, each with 62 extra-
large instances. The 10 million sequences were divided into multiple segments, and each segment was
submitted for execution by one AzureBLAST deployment. With this vast amount of resources allocated,
it took 14 days to complete the computations, which produced 260 GB of compressed data spread across
more than 400,000 output files.

A few observations and conclusions useful for many scientific applications running on Azure were
drawn after a post-experiment analysis. A first observation is that when a task runs for more than
two hours, a message will automatically reappear in the queue requesting the task to be scheduled,
thus leading to repeated computations; a simple solution is to check whether the result of a task has

23The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between sequences. It compares nucleotide
or protein sequences to sequence databases and calculates the statistical significance of matches. It can be used to infer func-
tional and evolutionary relationships between sequences as well as help identify members of gene families. More information
is available at http://blast.ncbi.nlm.nih.gov/Blast.cgi.

126 CHAPTER 4 Cloud Computing: Applications and Paradigms

been generated before launching it. Many applications, including BLAST, allow for the setting of some
parameters, but the computational effort to find optimal parameters is prohibitive. A user is also expected
to decide on an optimal balance between the cost and the number of instances to meet budget limitations.

A number of inefficiencies were observed: many VMs were idle for extended periods of time; when
a task finished execution, all worker instances waited for the next task; and when all jobs use the
same set of instances, resources are either under- or over-utilized. Load imbalance is another source
of inefficiency; some of the tasks of a job take considerably longer than others and delay the job’s
completion time.

The analysis of the logs shows unrecoverable instance failures. Some 50% of active instances lost
connection to the storage service but were automatically recovered by the fabric controller. System
updates caused several ensembles of instances to fail.

Another observation is that a computational science experiment requires the execution of several
binaries; thus the creation of workflows, a challenging task for many domain scientists. To address this
challenge, the authors of [215] developed a general platform for executing legacy Windows applications
on the cloud. In the Cirrus system a job has a description consisting of a prologue, a set of commands,
and a set of parameters. The prologue sets up the running environment; the commands are sequences of
shell scripts, including Azure-storage-related commands to transfer data between Azure blob storage
and the instance.

After the Windows Live ID service authenticates the user, it can submit and track a job through the
portal provided by the Web role (see Figure 4.8). The job is added to a table called job registry. The
execution of each job is controlled by a job manager instance that first scales the size of the worker
based on the job configuration; then the parametric engine starts exploring the parameter space. If this
is a test run, the parameter-sweeping result is sent to the sampling filter.

Each task is associated with a record in the task table, and this state record is updated periodically
by the worker instance running the task. The progress of the task is monitored by the manager. The

Web
portal

Web
service

Web role

Job
registration

Job manager role

Job
scheduler

Azure table

Scaling
engine

Parametric
engine

Sampling
filter

Worker

Worker

Worker

Worker

Worker

Worker

Dispatch queue

Azure blob

FIGURE 4.8

Cirrus, a general platform for executing legacy Windows applications on the cloud.

4.10 Cloud Computing for Biology Research 127

dispatch queue feeds into a set of worker instances. A worker periodically updates the task state in the
task table and listens for any control signals from the manager.

We continue our discussion of biology applications of the Azure infrastructure applied to a loosely
coupled workload for an ensemble-based simulation reported in [224]. A role in Azure is an encapsula-
tion of an application; as noted earlier, there are two kinds of role: (i) the Web roles for Web applications
and front-end code and (ii) the worker roles for background processing. Scientific applications such as
AzureBLAST use worker roles for the compute tasks and to implement their APIs, that provide a run
method and an entry point for the application and the state or configuration change notifications. The
applications use the Blob Storage (ABS) for large raw data sets, the Table Storage (ATS) for semistruc-
tured data, and the Queue Storage (AQS) for message queues. These services provide strong consistency
guarantees, but the complexity is moved to the application space.

Figure 4.9 illustrates the use of a software system called BigJob to decouple resource allocation
from resource binding for the execution of loosely coupled workloads on an Azure platform [224]. This
software eliminates the need for the application to manage individual VMs. The results of measurements
show a noticeable overhead for starting VMs and for launching the execution of an application task
on a remote resource. Increasing the computing power of the VM decreases the completion time for
long-running tasks.

Portal

Client

Queues

BigJob Manager

Worker Role
BigJob Agent

task 1 task 1 task k

Worker Role
BigJob Agent

task
k+1

task
k+2

task n

Service
Management

API

Blob

query

post results

start VM query statestart replicas

FIGURE 4.9

The execution of loosely coupled workloads using the Azure platform.

128 CHAPTER 4 Cloud Computing: Applications and Paradigms

4.11 Social computing, digital content, and cloud computing
Social networks play an increasingly important role in people’s lives. In recent years they have expanded
in terms of the size of the population involved and in terms of the functions performed. A promising
solution for analyzing large-scale social network data is to distribute the computation workload over a
large number of nodes of a cloud. Traditionally, determining the importance of a node or a relationship
in a network is done using sampling and surveying, but in a very large network structural properties
cannot be inferred by scaling up the results from small networks. It turns out that the evaluation of social
closeness is computationally intensive.

Social intelligence is another area where social and cloud computing intersect. Indeed, the process of
knowledge discovery and techniques based on pattern recognition demand high-performance computing
and resources that can be provided by computing clouds. Case-based reasoning (CBR), the process
of solving new problems based on the solutions of similar past problems, is used by context-aware
recommendation systems. It requires similarity-based retrieval. As the case base accumulates, such
applications must handle massive amounts of history data, which can be done by developing new
reasoning platforms running on the cloud. CBR is preferable to rule-based recommendation systems
for large-scale social intelligence applications. Indeed, the rules can be difficult to generalize or apply
to some domains. All triggering conditions must be strictly satisfied, scalability is a challenge as data
accumulate, and the systems are hard to maintain because new rules have to be added as the amount of
data increases.

A system based on CBR is described in [171]. The BetterLife 2.0 system consists of a cloud layer,
a case-based reasoning engine, and an API. The cloud layer uses the Hadoop Distributed File System
clusters to store application data represented by cases as well as social network information, such as
relationship topology and pairwise social closeness information. The CBR engine calculates similarity
measures between cases to retrieve the most similar ones and stores new cases back to the cloud layer.
The API connects to a master node, which is responsible for handling user queries, distributes the
queries to server machines, and receives results.

A case consists of a problem description, a solution, and optional annotations about the path to
derive the solution. The CBR uses MapReduce; all the cases are grouped by their userId, and then a
breadth first search (BFS) algorithm is applied to the graph, where each node corresponds to one user.
MapReduce is used to calculate the closeness according to pairwise relationship weight. A reasoning
cycle has four steps: (a) Retrieve the most relevant or similar cases from memory to solve the case; (b)
reuse: map the solution from the prior case to the new problem; (c) revise: test the new solution in the
real world or in a simulation and, if necessary, revise; and (d) retain: if the solution was adapted to the
target problem, store the result as a new case.

In the past, social networks have been constructed for a specific application domain (e.g., MyEx-
periment and nanoHub for biology and nanoscience, respectively). These networks enable researchers
to share data and provide a virtual environment supporting remote execution of workflows. Another
form of social computing is volunteer computing, when a large population of users donates resources
such as CPU cycles and storage space for a specific project – for example, the Mersenne Prime Search
initiated in 1996, followed in the late 1990s by SETI@Home, Folding@Home, and Storage@Home, a
project to back up and share huge data sets from scientific research. Information about these projects

4.11 Social Computing, Digital Content, and Cloud Computing 129

is available online at www.myExperiment.org, www.nanoHub.org, www.mersenne.org,
setiathome.berkeley.edu, and folding.stanford.edu.

Such platforms cannot be used in an environment where users require some level of accountability
because there are no SLAs. The PlanetLab project is a credit-based system in which users earn credits
by contributing resources and then spend those credits when using other resources. The Berkeley
Open Infrastructure for Network Computing (BOINC) aims to develop middleware for a distributed
infrastructure suitable for different applications.

An architecture designed as a Facebook application for a social cloud is presented in [76]. Methods
to get a range of data, including friends, events, groups, application users, profile information, and
photos, are available through a Facebook API. The Facebook Markup Language (FBML) is a subset
of HTML with proprietary extensions, and the Facebook JavaScript (FBJS) is a version of JavaScript
parsed, when a page is loaded, to create a virtual application scope. The prototype uses Web Services
to create a distributed and decentralized infrastructure.

There are numerous examples of cloud platforms for social networks. There are scalable cloud
applications hosted by commercial clouds (e.g., Facebook applications are hosted by Amazon Web
Services). Today some organizations use the Facebook credentials of an individual for authentication.

The new technologies supported by cloud computing favor the creation of digital content. Data
mashups or composite services combine data extracted by different sources; event-driven mashups, also
called Svc, interact through events rather than the request/response traditional method. A recent paper
[331] argues that “the mashup and the cloud computing worlds are strictly related because very often
the services combined to create new Mashups follow the SaaS model and more, in general, rely on
cloud systems.” The paper also argues that the Mashup platforms rely on cloud computing systems –
for example, the IBM Mashup Center and the JackBe Enterprise Mashup server.

There are numerous examples of monitoring, notification, presence, location, and map services based
on the Svc approach, including Monitor Mail, Monitor RSSFeed, Send SMS, Make Phone Call, GTalk,
FireEagle, and Google Maps. For example, consider a service to send a phone call when a specific email
is received; the Mail Monitor Svc uses input parameters such as User Id, Sender Address Filter, and
email Subject Filter to identify an email and generates an event that triggers the Make TTS Call action
of a Text To Speech Call Svc linked to it.

The system in [331] supports creation, deployment, activation, execution, and management of event-
driven mashups. It has a user interface, a graphics tool called Service Creation Environment that easily
supports the creation of new mashups, and a platform called Mashup Container that manages mashup
deployment and execution. The system consists of two subsystems: the service execution platform for
mashups execution and the deployer module that manages the installation of mashups and Svcs. A
new mashup is created using the graphical development tool and saved as an XML file. It can then be
deployed into a Mashup Container following the Platform-as-a-Service (PaaS) approach. The Mashup
Container supports a primitive SLA that allows the delivery of different levels of service.

The prototype uses the Java Message Service (JMS), which supports asynchronous communication.
Each component sends and receives messages, and the sender does not block while waiting for the
recipient to respond. The system’s fault tolerance was tested on a system based on the VMware vSphere.
In this environment, the fault tolerance is provided transparently by the VMM, and neither the VMs
nor the applications are aware of the fault-tolerance mechanism. Two VMs, a primary and a secondary
one, run on distinct hosts and execute the same set of instructions such that, when the primary fails, the
secondary continues the execution seamlessly.

130 CHAPTER 4 Cloud Computing: Applications and Paradigms

4.12 Further reading
There is a vast literature dedicated to Divisible Load Theory (DLT), including hundreds of papers (see
www.ece.sunysb.edu/∼tom/dlt.html). MapReduce is discussed in [100]. The GrepTheWeb
application is analyzed in [360]. Metadata generation for large scientific databases is presented in [282].
Cloud applications in biology are analyzed in [223,224], and social applications of cloud computing
are presented in [76,171,331]. Benchmarking of cloud services is analyzed in [82,179,133]. High
performance computing on the cloud is discussed in [64] and service-level checking is analyzed in [78].
Cloud migration and open-source cloud computing tools are presented in [190] and [234], respectively,
while software testing and scientific applications are covered in [305] and [375]. Application and data
portability [300], folt-tolerant middleware [388], and a data debugger [330] are also topics of interest for
application developers. Workload migration is analyzed in [367], while cost and application performance
issues rediscussed in [196] and [381].

4.13 Exercises and Problems
Problem 1. Download and install Zookeeper from the site http://zookeeper.apache.org/.

Use the API to create the basic workflow patterns shown in Figure 4.3.

Problem 2. Use the AWS Simple Workflow Service to create the basic workflow patterns shown in
Figure 4.3.

Problem 3. Use the AWS CloudFormation service to create the basic workflow patterns shown in
Figure 4.3.

Problem 4. Define a set of keywords that are ordered based on their relevance to the topic of cloud
security. Then search the Web using these keywords to locate 10–20 papers and store the
papers in an S3 bucket. Create a MapReduce application modeled after the one discussed
in Section 4.7 to rank the papers based on the incidence of the relevant keywords. Compare
your ranking with the rankings of the search engine you used to identify the papers.

Problem 5. Use the AWS MapReduce service to rank the papers in Problem 4.

Problem 6. The paper [63] describes the elasticLM, a commercial product that provides license and
billing Web-based services. Analyze the merits and shortcomings of the system.

Problem 7. Search the Web for reports of cloud system failures and discuss the causes of each incident.

Problem 8. Identify a set of requirements you would like to be included in a service-level agreement.
Attempt to express these requirements using the Web Service Agreement Specification
(WS-Agreement) [20] and determine whether it is flexible enough to express your options.

Problem 9. Research the power consumption of processors used in mobile devices and their energy
efficiency. Rank the components of a mobile device in terms of power consumption.
Establish a set of guidelines to minimize the power consumption of mobile applications.

5
CHAPTER

Cloud Resource Virtualization

Three classes of fundamental abstractions – interpreters, memory, and communications links – are nec-
essary to describe the operation of a computing system [312]. The physical realization of each one of
these abstractions, such as processors that transform information, primary and secondary memory for
storing information, and communication channels that allow different systems to communicate with one
another, can vary in terms of bandwidth,1 latency,2 reliability, and other physical characteristics. Soft-
ware systems such as operating systems are responsible for the management of the system resources –
the physical implementations of the three abstractions.

Resource management, discussed in depth in Chapter 6, grows increasingly complex as the scale
of a system as well as the number of users and the diversity of applications using the system increase.
Resource management for a community of users with a wide range of applications running under
different operating systems is a very difficult problem. Resource management becomes even more
complex when resources are oversubscribed and users are uncooperative. In addition to external factors,
resource management is affected by internal factors, such as the heterogeneity of the hardware and
software systems, the ability to approximate the global state of the system and to redistribute the load,
the failure rates of different components, and many other factors.

The traditional solution for a data center is to install standard operating systems on individual
systems and rely on conventional OS techniques to ensure resource sharing, application protection,
and performance isolation. System administration, accounting, security, and resource management are
very challenging for the providers of service in this setup; application development and performance
optimization are equally challenging for the users.

The alternative is resource virtualization, a technique analyzed in this chapter. Virtualization is a
basic tenet of cloud computing – that simplifies some of the resource management tasks. For example,
the state of a virtual machine (VM) running under a virtual machine monitor (VMM) can be saved
and migrated to another server to balance the load. At the same time, virtualization allows users to
operate in environments with which they are familiar rather than forcing them to work in idiosyncratic
environments.

Resource sharing in a virtual machine environment requires not only ample hardware support and, in
particular, powerful processors but also architectural support for multilevel control. Indeed, resources

1We use the term bandwidth in a broad sense to mean the number of operations per unit of time. For example, millions of
instructions per second (MIPS) or millions of floating-point instructions per second (MFLOPS) measure the CPU speed and
mega bits per second (Mbps) measures the speed of a communication channel.
2Latency is defined as the time elapsed from the instant an operation is initiated until its effect is sensed. Latency is context-

dependent. For example, the latency of a communication channel is the time it takes a bit to traverse the communication
channel from its source to its destination; the memory latency is the time elapsed from the instant a memory read instruction
is issued until the time instant the data becomes available in a memory register.

Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00005-1
© 2013 Elsevier Inc. All rights reserved.

131

132 CHAPTER 5 Cloud Resource Virtualization

such as CPU cycles, memory, secondary storage, and I/O and communication bandwidth are shared
among several virtual machines; for each VM, resources must be shared among multiple instances of
an application.

We start our discussion with a look at virtualization principles and the motivation for virtual-
ization. Then we discuss the interfaces that define the properties of the system at different levels
of abstraction: the application programming interface (API), the application binary interface (ABI),
and instruction set architecture (ISA). We discuss alternatives for the implementation of virtualiza-
tion in Sections 5.3 and 5.4, then analyze their impact on performance and security isolation in
Section 5.5.

Two distinct approaches for virtualization, the full virtualization and the paravirtualization, are dis-
cussed in Section 5.6. Full virtualization is feasible when the hardware abstraction provided by the
VMM is an exact replica of the physical hardware. In this case any operating system running on the
hardware will run without modifications under the VMM. In contrast, paravirtualization requires some
modifications of the guest operating systems because the hardware abstraction provided by the VMM
does not support all the functions the hardware does.

Traditional processor architectures were conceived for one level of control because they support two
execution modes, the kernel and the user mode. In a virtualized environment all resources are under the
control of a VMM and a second level of control is exercised by the guest operating system. Although
two-level scheduling for sharing CPU cycles can be easily implemented, sharing of resources such as
cache, memory, and I/O bandwidth is more intricate. In 2005 and 2006 the x86 processor architecture
was extended to provide hardware support for virtualization, as discussed in Section 5.7.

We analyze the Xen VMM in Section 5.8 and discuss an optimization of its network performance
in Section 5.9. High-performance processors (e.g., Itanium) have multiple functional units but do not
provide explicit support for virtualization, as shown in Section 5.10.

The system functions critical for the performance of a VM environment are cache and memory
management, handling of privileged instructions, and input/output (I/O) handling. Important sources for
the performance degradation in a VM environment are the cache misses, as we shall see in Section 5.11.
We analyze the security advantages of virtualization in Section 9.6 and some of the potential risks in
Section 5.12. Finally, we discuss software fault isolation in Section 5.13.

5.1 Virtualization
Virtualization simulates the interface to a physical object by any one of four means:

1. Multiplexing. Create multiple virtual objects from one instance of a physical object. For example, a
processor is multiplexed among a number of processes or threads.

2. Aggregation. Create one virtual object from multiple physical objects. For example, a number of
physical disks are aggregated into a RAID disk.

3. Emulation. Construct a virtual object from a different type of physical object. For example, a physical
disk emulates a random access memory.

4. Multiplexing and emulation. Examples: Virtual memory with paging multiplexes real memory and
disk, and a Virtual address emulates a real address; TCP emulates a reliable bit pipe and multiplexes
a physical communication channel and a processor.

5.2 Layering and Virtualization 133

Virtualization abstracts the underlying resources and simplifies their use, isolates users from one
another, and supports replication, which, in turn, increases the elasticity of the system. Virtualization is
a critical aspect of cloud computing, equally important to the providers and consumers of cloud services,
and plays an important role in:

• System security because it allows isolation of services running on the same hardware.
• Performance and reliability because it allows applications to migrate from one platform to another.
• The development and management of services offered by a provider.
• Performance isolation.

Virtualization has been used successfully since the late 1950s. A virtual memory based on paging
was first implemented on the Atlas computer at the University of Manchester in the United Kingdom in
1959. In a cloud computing environment a VMM runs on the physical hardware and exports hardware-
level abstractions to one or more guest operating systems. A guest OS interacts with the virtual hardware
in the same way it would interact with the physical hardware, but under the watchful eye of the VMM
which traps all privileged operations and mediates the interactions of the guest OS with the hardware.
For example, a VMM can control I/O operations to two virtual disks implemented as two different sets
of tracks on a physical disk. New services can be added without the need to modify an operating system.

User convenience is a necessary condition for the success of the utility computing paradigms. One
of the multiple facets of user convenience is the ability to run remotely using the system software and
libraries required by the application. User convenience is a major advantage of a VM architecture over
a traditional operating system. For example, a user of the Amazon Web Services (AWS) could submit an
Amazon Machine Image (AMI) containing the applications, libraries, data, and associated configuration
settings. The user could choose the operating system for the application, then start, terminate, and
monitor as many instances of the AMI as needed, using the Web Service APIs and the performance
monitoring and management tools provided by the AWS.

There are side effects of virtualization, notably the performance penalty and the hardware costs. As
we shall see shortly, all privileged operations of a VM must be trapped and validated by the VMM, which
ultimately controls system behavior; the increased overhead has a negative impact on performance. The
cost of the hardware for a VM is higher than the cost for a system running a traditional operating system
because the physical hardware is shared among a set of guest operating systems and it is typically
configured with faster and/or multicore processors, more memory, larger disks, and additional network
interfaces compared with a system running a traditional operating system.

5.2 Layering and virtualization
A common approach to managing system complexity is to identify a set of layers with well-defined
interfaces among them. The interfaces separate different levels of abstraction. Layering minimizes the
interactions among the subsystems and simplifies the description of the subsystems. Each subsystem
is abstracted through its interfaces with the other subsystems. Thus, we are able to design, implement,
and modify the individual subsystems independently.

The instruction set architecture (ISA) defines a processor’s set of instructions. For example, the
Intel architecture is represented by the x86-32 and x86-64 instruction sets for systems supporting 32-bit

134 CHAPTER 5 Cloud Resource Virtualization

addressing and 64-bit addressing, respectively. The hardware supports two execution modes, a privi-
leged, or kernel, mode and a user mode. The instruction set consists of two sets of instructions, privileged
instructions that can only be executed in kernel mode and nonprivileged instructions that can be executed
in user mode. There are also sensitive instructions that can be executed in kernel and in user mode but
that behave differently (see Section 5.6).

Computer systems are fairly complex, and their operation is best understood when we consider a
model similar to the one in Figure 5.1, which shows the interfaces among the software components and
the hardware [325]. The hardware consists of one or more multicore processors, a system interconnect
(e.g., one or more buses), a memory translation unit, the main memory, and I/O devices, including one
or more networking interfaces. Applications written mostly in high-level languages (HLL) often call
library modules and are compiled into object code. Privileged operations, such as I/O requests, cannot
be executed in user mode; instead, application and library modules issue system calls and the operating
system determines whether the privileged operations required by the application do not violate system
security or integrity and, if they don’t, executes them on behalf of the user. The binaries resulting from
the translation of HLL programs are targeted to a specific hardware architecture.

The first interface we discuss is the instruction set architecture (ISA) at the boundary of the hardware
and the software. The next interface is the application binary interface (ABI), which allows the ensemble
consisting of the application and the library modules to access the hardware. The ABI does not include
privileged system instructions; instead it invokes system calls. Finally, the application program interface

Hardware

Operating System

ISA

Libraries

ABI

API

System calls

Applications

System ISA User ISA

A1

A2

A3

FIGURE 5.1

Layering and interfaces between layers in a computer system. The software components, including appli-
cations, libraries, and operating system, interact with the hardware via several interfaces: the application
programming interface (API), the application binary interface (ABI), and the instruction set architecture (ISA).
An application uses library functions (A1), makes system calls (A2), and executes machine instructions (A3).

5.2 Layering and Virtualization 135

(API) defines the set of instructions the hardware was designed to execute and gives the application
access to the ISA. It includes HLL library calls, which often invoke system calls. A process is the
abstraction for the code of an application at execution time; a thread is a lightweight process. The ABI
is the projection of the computer system seen by the process, and the API is the projection of the system
from the perspective of the HLL program.

Clearly, the binaries created by a compiler for a specific ISA and a specific operating system are
not portable. Such code cannot run on a computer with a different ISA or on computers with the
same ISA but different operating systems. However, it is possible to compile an HLL program for a
VM environment, as shown in Figure 5.2, where portable code is produced and distributed and then
converted by binary translators to the ISA of the host system. A dynamic binary translation converts
blocks of guest instructions from the portable code to the host instruction and leads to a significant
performance improvement as such blocks are cached and reused.

Compiler front-end Compiler

Compiler back-end

Loader

VM loader

VMcompiler/
interpreter

VM compiler/
interpreter

FIGURE 5.2

High-level language (HLL) code can be translated for a specific architecture and operating system. HLL code
can also be compiled into portable code and then the portable code translated for systems with different
ISAs. The code that is shared/distributed is the object code in the first case and the portable code in the
second case.

136 CHAPTER 5 Cloud Resource Virtualization

5.3 Virtual machine monitors
A virtual machine monitor (VMM), also called a hypervisor, is the software that securely partitions
the resources of a computer system into one or more virtual machines. A guest operating system is an
operating system that runs under the control of a VMM rather than directly on the hardware. The VMM
runs in kernel mode, whereas a guest OS runs in user mode. Sometimes the hardware supports a third
mode of execution for the guest OS.

VMMs allow several operating systems to run concurrently on a single hardware platform; at the
same time, VMMs enforce isolation among these systems, thus enhancing security. A VMM controls
how the guest operating system uses the hardware resources. The events occurring in one VM do not
affect any other VM running under the same VMM. At the same time, the VMM enables:

• Multiple services to share the same platform.
• The movement of a server from one platform to another, the so-called live migration.
• System modification while maintaining backward compatibility with the original system.

When a guest OS attempts to execute a privileged instruction, the VMM traps the operation and
enforces the correctness and safety of the operation. The VMM guarantees the isolation of the individual
VMs, and thus ensures security and encapsulation, a major concern in cloud computing. At the same time,
the VMM monitors system performance and takes corrective action to avoid performance degradation;
for example, the VMM may swap out a VM (copies all pages of that VM from real memory to disk and
makes the real memory frames available for paging by other VMs) to avoid thrashing.

A VMM virtualizes the CPU and memory. For example, the VMM traps interrupts and dispatches
them to the individual guest operating systems. If a guest OS disables interrupts, the VMM buffers such
interrupts until the guest OS enables them. The VMM maintains a shadow page table for each guest
OS and replicates any modification made by the guest OS in its own shadow page table. This shadow
page table points to the actual page frame and is used by the hardware component called the memory
management unit (MMU) for dynamic address translation.

Memory virtualization has important implications on performance. VMMs use a range of optimiza-
tion techniques; for example, VMware systems avoid page duplication among different virtual machines;
they maintain only one copy of a shared page and use copy-on-write policies whereas Xen imposes total
isolation of the VM and does not allow page sharing. VMMs control the virtual memory management
and decide what pages to swap out; for example, when the ESX VMware server wants to swap out
pages, it uses a balloon process inside a guest OS and requests it to allocate more pages to itself, thus
swapping out pages of some of the processes running under that VM. Then it forces the balloon process
to relinquish control of the free page frames.

5.4 Virtual machines
A virtual machine (VM) is an isolated environment that appears to be a whole computer but actually
only has access to a portion of the computer resources. Each VM appears to be running on the bare
hardware, giving the appearance of multiple instances of the same computer, though all are supported by
a single physical system. Virtual machines have been around since the early 1970s, when IBM released
its VM/370 operating system.

5.4 Virtual Machines 137

Ap
pl

ic
at

io
n

Application

Guest OSAp
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Application

Guest OS-1

Application

Guest OS-n

(c) (d)

(b)

Application

Guest
OS-n

Application

Guest
OS-1

(a)

System VMs

Traditional
VM

Hybrid VM

Hosted VM

Process VMs

Whole
system VM

Codesigned
VM

Dynamic
translators

HLL VMs
Binary

optimizers

Multi
program

Same ISASame ISA Different ISA Different ISA

FIGURE 5.3

(a) A taxonomy of process and system VMs for the same and for different ISAs. Traditional, hybrid, and hosted
are three classes of VM for systems with the same ISA. (b) Traditional VMs. The VMM supports multiple VMs
and runs directly on the hardware. (c) A hybrid VM. The VMM shares the hardware with a host operating system
and supports multiple virtual machines. (d) A hosted VM. The VMM runs under a host operating system.

We distinguish two types of VM: process and system VMs [see Figure 5.3(a)]. A process VM is a
virtual platform created for an individual process and destroyed once the process terminates. Virtually
all operating systems provide a process VM for each one of the applications running, but the more
interesting process VMs are those that support binaries compiled on a different instruction set. A system
VM supports an operating system together with many user processes. When the VM runs under the
control of a normal OS and provides a platform-independent host for a single application, we have an
application virtual machine (e.g., Java Virtual Machine [JVM]).

138 CHAPTER 5 Cloud Resource Virtualization

Table 5.1 A nonexhaustive inventory of system virtual machines. The host ISA refers to the
instruction set of the hardware; the guest ISA refers to the instruction set supported by the
virtual machine. The VM could run under a host OS, directly on the hardware, or under a VMM.
The guest OS is the operating system running under the control of a VM, which in turn may run
under the control of the VMM.
Name Host ISA Guest ISA Host OS Guest OS Company

Integrity VM x86-64 x86-64 HP-Unix Linux, Windows
HP Unix

HP

Power VM Power Power No host OS Linux, AIX IBM
z/VM z-ISA z-ISA No host OS Linux on z-ISA IBM
Lynx Secure x86 x86 No host OS Linux, Windows LinuxWorks
Hyper-V Server x86-64 x86-64 Windows Windows Microsoft
Oracle VM x86, x86-64 x86, x86-64 No host OS Linux, Windows Oracle
RTS Hypervisor x86 x86 No host OS Linux, Windows Real Time

Systems
SUN xVM x86, SPARC same as host No host OS Linux, Windows SUN
VMware EX
Server

x86, x86-64 x86, x86-64 No host OS Linux, Windows,
Solaris, FreeBSD

VMware

VMware Fusion x86, x86-64 x86, x86-64 Mac OS x86 Linux, Windows,
Solaris, FreeBSD

VMware

VMware Server x86, x86-64 x86, x86-64 Linux,
Windows

Linux, Windows,
Solaris, FreeBSD

VMware

VMware
Workstation

x86, x86-64 x86, x86-64 Linux,
Windows

Linux, Windows,
Solaris, FreeBSD

VMware

VMware Player x86, x86-64 x86, x86-64 Linux,
Windows

Linux, Windows,
Solaris, FreeBSD

VMware

Denali x86 x86 Denali ILVACO, NetBSD University of
Washington

Xen x86, x86-64 x86, x86-64 Linux Solaris Linux, Solaris
NetBSD

University of
Cambridge

A literature search reveals the existence of some 60 different virtual machines, many created by the
large software companies; Table 5.1 lists a subset of them.

A system virtual machine provides a complete system; each VM can run its own OS, which in turn can
run multiple applications. Systems such as Linux Vserver [214], OpenVZ (Open VirtualiZation) [274],
FreeBSD Jails [124], and Solaris Zones [296], based on Linux, FreeBSD, and Solaris, respectively,
implement operating system-level virtualization technologies.

Operating system-level virtualization allows a physical server to run multiple isolated operating
system instances, subject to several constraints; the instances are known as containers, virtual private
servers (VPSs), or virtual environments (VEs). For example, OpenVZ requires both the host and the
guest OS to be Linux distributions. These systems claim performance advantages over the systems based

5.5 Performance and Security Isolation 139

on a VMM such as Xen or VMware; according to [274], there is only a 1% to 3% performance penalty
for OpenVZ compared to a stand-alone Linux server. OpenVZ is licensed under the GPL version 2.

Recall that a VMM allows several virtual machines to share a system. Several organizations of the
software stack are possible:

• Traditional. VM also called a “bare metal” VMM. A thin software layer that runs directly on the
host machine hardware; its main advantage is performance [see Figure 5.3(b)]. Examples: VMWare
ESX, ESXi Servers, Xen, OS370, and Denali.

• Hybrid. The VMM shares the hardware with the existing OS [see Figure 5.3(c)]. Example: VMWare
Workstation.

• Hosted. The VM runs on top of an existing OS [see Figure 5.3(d)]. The main advantage of this
approach is that the VM is easier to build and install. Another advantage of this solution is that the
VMM could use several components of the host OS, such as the scheduler, the pager, and the I/O
drivers, rather than providing its own. A price to pay for this simplicity is the increased overhead and
associated performance penalty; indeed, the I/O operations, page faults, and scheduling requests
from a guest OS are not handled directly by the VMM. Instead, they are passed to the host OS.
Performance as well as the challenges to support complete isolation of VMs make this solution less
attractive for servers in a cloud computing environment. Example: User-mode Linux.

A semantic gap exists between the added services and the virtual machine. As pointed out in [79],
services provided by the virtual machine “operate below the abstractions provided by the guest operating
system It is difficult to provide a service that checks file system integrity without the knowledge
of on-disk structure.”

The VMMs discussed next manage the resource sharing among the VMs sharing a physical system.

5.5 Performance and security isolation
Performance isolation is a critical condition for quality-of-service (QoS) guarantees in shared computing
environments. Indeed, if the run-time behavior of an application is affected by other applications running
concurrently and, thus, is competing for CPU cycles, cache, main memory, and disk and network
access, it is rather difficult to predict the completion time. Moreover, it is equally difficult to optimize
the application. Several operating systems, including Linux/RK [270], QLinux [343], and SILK [44],
support some performance isolation, but problems still exist because one has to account for all resources
used and to distribute the overhead for different system activities, including context switching and
paging, to individual users – a problem often described as QoS crosstalk [348].

Processor virtualization presents multiple copies of the same processor or core on multicore systems.
The code is executed directly by the hardware, whereas processor emulation presents a model of another
hardware system in which instructions are “emulated” in software more slowly than virtualization. An
example is Microsoft’s VirtualPC, which could run on chip sets other than the x86 family. It was used
on Mac hardware until Apple adopted Intel chips.

Traditional operating systems multiplex multiple processes or threads, whereas a virtualization sup-
ported by a VMM multiplexes full operating systems. Obviously, there is a performance penalty because
an OS is considerably more heavyweight than a process and the overhead of context switching is larger.
A VMM executes directly on the hardware a subset of frequently used machine instructions generated

140 CHAPTER 5 Cloud Resource Virtualization

by the application and emulates privileged instructions, including device I/O requests. The subset of
the instructions executed directly by the hardware includes arithmetic instructions, memory access, and
branching instructions.

Operating systems use process abstraction not only for resource sharing but also to support isolation.
Unfortunately, this is not sufficient from a security perspective. Once a process is compromised, it is
rather easy for an attacker to penetrate the entire system. On the other hand, the software running on
a virtual machine has the constraints of its own dedicated hardware; it can only access virtual devices
emulated by the software. This layer of software has the potential to provide a level of isolation nearly
equivalent to the isolation presented by two different physical systems. Thus, the virtualization can be
used to improve security in a cloud computing environment.

A VMM is a much simpler and better specified system than a traditional operating system. For
example, the Xen VMM discussed in Section 5.8 has approximately 60,000 lines of code, whereas
the Denali VMM [372] has only about half that, or 30,000 lines of code. The security vulnerability
of VMMs is considerably reduced because the systems expose a much smaller number of privileged
functions. For example, the Xen VMM can be accessed through 28 hypercalls, whereas a standard
Linux allows hundreds (e.g., Linux 2.6.11 allows 289 system calls). In addition to a plethora of system
calls, a traditional operating system supports special devices (e.g., /dev/kmem) and many privileged
programs from a third party (e.g., sendmail and sshd).

5.6 Full virtualization and paravirtualization
In 1974 Gerald J. Popek and Robert P. Goldberg gave a set of sufficient conditions for a computer
architecture to support virtualization and allow a VMM to operate efficiently [293]:

• A program running under the VMM should exhibit a behavior essentially identical to that demon-
strated when the program runs directly on an equivalent machine.

• The VMM should be in complete control of the virtualized resources.
• A statistically significant fraction of machine instructions must be executed without the intervention

of the VMM.

Another way to identify an architecture suitable for a virtual machine is to distinguish two classes
of machine instructions: sensitive instructions, which require special precautions at execution time, and
innocuous instructions, which are not sensitive. In turn, sensitive instructions can be:

• Control sensitive, which are instructions that attempt to change either the memory allocation or the
privileged mode.

• Mode sensitive, which are instructions whose behavior is different in the privileged mode.

An equivalent formulation of the conditions for efficient virtualization can be based on this classifi-
cation of machine instructions. A VMM for a third-generation (or later) computer can be constructed
if the set of sensitive instructions is a subset of the privileged instructions of that machine. To handle
nonvirtualizable instructions, one could resort to two strategies:

• Binary translation. The VMM monitors the execution of guest operating systems; nonvirtualizable
instructions executed by a guest operating system are replaced with other instructions.

5.6 Full Virtualization and Paravirtualization 141

• Paravirtualization. The guest operating system is modified to use only instructions that can be
virtualized.

There are two basic approaches to processor virtualization: full virtualization, in which each virtual
machine runs on an exact copy of the actual hardware, and paravirtualization, in which each virtual
machine runs on a slightly modified copy of the actual hardware (see Figure 5.4). The reasons that
paravirtualization is often adopted are (i) some aspects of the hardware cannot be virtualized; (ii)
to improve performance; and (iii) to present a simpler interface. VMware VMMs are examples of
full virtualization. Xen [41] and Denali [372] are based on paravirtualization; Section 5.8 covers the
strategies to overcome hardware limitations for paravirtualization in Xen.

Full virtualization requires a virtualizable architecture; the hardware is fully exposed to the guest
OS, which runs unchanged, and this ensures that this direct execution mode is efficient. On the other
hand, paravirtualization is done because some architectures such as x86 are not easily virtualizable.
Paravirtualization demands that the guest OS be modified to run under the VMM; furthermore, the
guest OS code must be ported for individual hardware platforms.

Systems such as VMware EX Server support full virtualization on x86 architecture. The virtualization
of the memory management unit (MMU) and the fact that privileged instructions executed by a guest
OS fail silently pose some challenges; for example, to address the latter problem, one has to insert
traps whenever privileged instructions are issued by a guest OS. The system must also maintain shadow
copies of system control structures, such as page tables, and trap every event affecting the state of these
control structures; the overhead of many operations is substantial .

Application performance under a virtual machine is critical; generally, virtualization adds some level
of overhead that negatively affects the performance. In some cases an application running under a VM

(a) (b)
FIGURE 5.4

(a) Full virtualization requires the hardware abstraction layer of the guest OS to have some knowledge about
the hardware. (b) Paravirtualization avoids this requirement and allows full compatibility at the application
binary interface (ABI).

142 CHAPTER 5 Cloud Resource Virtualization

performs better than one running under a classical OS. This is the case of a policy called cache isolation.
The cache is generally not partitioned equally among processes running under a classical OS, since one
process may use the cache space better than the other. For example, in the case of two processes, one
write-intensive and the other read-intensive, the cache may be aggressively filled by the first. Under
the cache isolation policy the cache is divided between the VMs and it is beneficial to run workloads
competing for cache in two different VMs [324]. The application I/O performance running under a VM
depends on factors such as the disk partition used by the VM, the CPU utilization, the I/O performance
of the competing VMs, and the I/O block size. On a Xen platform, discrepancies between the optimal
choice and the default are as high as 8% to 35% [324].

5.7 Hardware support for virtualization
In early 2000 it became obvious that hardware support for virtualization was necessary, and Intel and
AMD started work on the first-generation virtualization extensions of the x86 3 architecture. In 2005
Intel released two Pentium 4 models supporting VT-x, and in 2006 AMD announced Pacifica and then
several Athlon 64 models.

A 2006 paper [253] analyzes the challenges to virtualizing Intel architectures and then presents
VT-x and VT-i virtualization architectures for x86 and Itanium architectures, respectively. Software
solutions at that time addressed some of the challenges, but hardware solutions could improve not only
performance but also security and, at the same time, simplify the software systems. We first examine
the problems faced by virtualization of the x86 architecture:

• Ring deprivileging. This means that a VMM forces the guest software, the operating system, and
the applications to run at a privilege level greater than 0. Recall that the x86 architecture provides
four protection rings at levels 0–3. Two solutions are then possible: (a) The (0/1/3) mode, in which
the VMM, the OS, and the application run at privilege levels 0, 1, and 3, respectively; or (b) the
(0,3,3) mode, in which the VMM, a guest OS, and applications run at privilege levels 0, 3, and 3,
respectively. The first mode is not feasible for x86 processors in 64-bit mode, as we shall see shortly.

• Ring aliasing. Problems created when a guest OS is forced to run at a privilege level other than that
it was originally designed for. For example, when the CR register4 is PUSHed, the current privilege
level is also stored on the stack [253].

• Address space compression. A VMM uses parts of the guest address space to store several system
data structures, such as the interrupt-descriptor table and the global-descriptor table. Such data
structures must be protected, but the guest software must have access to them.

• Nonfaulting access to privileged state. Several instructions, LGDT, SIDT, SLDT, and LTR that
load the registers GDTR, IDTR, LDTR, and TR, can only be executed by software running at
privilege level 0, because these instructions point to data structures that control the CPU operation.

3The names x86-32, i386, x86, and IA-32 all refer to the Intel CISC-based instruction architecture, now supplanted by x86-64,
which supports vastly larger physical and virtual address spaces. The x86-64 specification is distinct from the Itanium, initially
known as IA-64 architecture.
4The x86 architecture supports memory segmentation with a segment size of 64K. The code-segment register (CR) points

to the code segment. MOV, POP, and PUSH instructions serve to load and store segment registers, including CR.

5.7 Hardware Support for Virtualization 143

VMX root VMX nonroot

VM entry

VM exit

Virtual-machine control structure

host-state

guest-state

(b)(a)
FIGURE 5.5

(a) The two modes of operation of VT-x, and the two operations to transit from one to another. (b) The VMCS
includes host-state and guest-state areas that control the VM entry and VM exit transitions.

Nevertheless, instructions that store from these registers fail silently when executed at a privilege
level other than 0. This implies that a guest OS executing one of these instructions does not realize
that the instruction has failed.

• Guest system calls. Two instructions, SYSENTER and SYSEXIT, support low-latency system calls.
The first causes a transition to privilege level 0, whereas the second causes a transition from privilege
level 0 and fails if executed at a level higher than 0. The VMM must then emulate every guest
execution of either of these instructions, which has a negative impact on performance.

• Interrupt virtualization. In response to a physical interrupt, the VMM generates a “virtual interrupt”
and delivers it later to the target guest OS. But every OS has the ability to mask interrupts5; thus the vir-
tual interrupt could only be delivered to the guest OS when the interrupt is not masked. Keeping track
of all guest OS attempts to mask interrupts greatly complicates the VMM and increases the overhead.

• Access to hidden state. Elements of the system state (e.g., descriptor caches for segment registers)
are hidden; there is no mechanism for saving and restoring the hidden components when there is a
context switch from one VM to another.

• Ring compression. Paging and segmentation are the two mechanisms to protect VMM code from
being overwritten by a guest OS and applications. Systems running in 64-bit mode can only use
paging, but paging does not distinguish among privilege levels 0, 1, and 2, so the guest OS must run
at privilege level 3, the so-called (0/3/3) mode. Privilege levels 1 and 2 cannot be used; thus the
name ring compression.

• Frequent access to privileged resources increases VMM overhead. The task-priority register (TPR)
is frequently used by a guest OS. The VMM must protect the access to this register and trap all
attempts to access it. This can cause a significant performance degradation.

Similar problems exist for the Itanium architecture discussed in Section 5.10.
A major architectural enhancement provided by the VT-x is the support for two modes of operations

and a new data structure called the virtual machine control structure (VMCS), including host-state and
guest-state areas (see Figure 5.5):

• VMX root. Intended for VMM operations and very close to the x86 without VT-x.

5The interrupt flag (IF) in the EFLAGS register is used to control interrupt masking.

144 CHAPTER 5 Cloud Resource Virtualization

• VMX nonroot. Intended to support a VM.

When executing a VM entry operation, the processor state is loaded from the guest-state of the VM
scheduled to run; then the control is transferred from the VMM to the VM. A VM exit saves the processor
state in the guest-state area of the running VM; then it loads the processor state from the host-state area
and finally transfers control to the VMM. Note that all VM exit operations use a common entry point
to the VMM.

Each VM exit operation saves the reason for the exit and, eventually, some qualifications in VMCS.
Some of this information is stored as bitmaps. For example, the exception bitmap specifies which one
of 32 possible exceptions caused the exit. The I/O bitmap contains one entry for each port in a 16-bit
I/O space.

The VMCS area is referenced with a physical address and its layout is not fixed by the architecture
but can be optimized by a particular implementation. The VMCS includes control bits that facilitate
the implementation of virtual interrupts. For example, external-interrupt exiting, when set, causes the
execution of a VM exit operation; moreover, the guest is not allowed to mask these interrupts. When the
interrupt window exiting is set, a VM exit operation is triggered if the guest is ready to receive interrupts.

Processors based on two new virtualization architectures, VT-d 6 and VT-c, have been developed.
The first supports the I/O memory management unit (I/O MMU) virtualization and the second supports
network virtualization.

Also known as PCI pass-through, I/O MMU virtualization gives VMs direct access to peripheral
devices. VT-d supports:

• DMA address remapping, which is address translation for device DMA transfers.
• Interrupt remapping, which is isolation of device interrupts and VM routing.
• I/O device assignment, in which an administrator can assign the devices to a VM in any configuration.
• Reliability features, which report and record DMA and interrupt errors that may otherwise corrupt

memory and impact VM isolation.

Next we discuss Xen, a widely used VMM or hypervisor.

5.8 Case study: Xen, a VMM based on paravirtualization
Xen is a VMM or hypervisor developed by the Computing Laboratory at the University of Cambridge,
United Kingdom, in 2003. Since 2010 Xen has been free software, developed by the community of users
and licensed under the GNU General Public License (GPLv2). Several operating systems, including
Linux, Minix, NetBSD, FreeBSD, NetWare, and OZONE, can operate as paravirtualized Xen guest
operating systems running on x86, x86-64, Itanium, and ARM architectures.

The goal of the Cambridge group, led by Ian Pratt, was to design a VMM capable of scaling to about
100 VMs running standard applications and services without any modifications to the application binary
interface (ABI). Fully aware that the x86 architecture does not support efficiently full virtualization, the
designers of Xen opted for paravirtualization.

Next we analyze the original implementation of Xen for the x86 architecture discussed in [41]. The
creators of Xen used the concept of domain (Dom) to refer to the ensemble of address spaces hosting a

6The corresponding AMD architecture is called AMD-Vi.

5.8 Case Study: Xen, a VMM Based on Paravirtualization 145

x86 hardware

Domain0 control
interface

Virtual x86
CPU

Virtual physical
memory

Virtual network
Virtual block

devices

Xen

Management
OS

Xen-aware
device drivers

Application Application Application

Guest OS

Xen-aware
device drivers

Guest OS

Xen-aware
device drivers

Xen-aware
device drivers

Guest OS

Xen-aware
device drivers

FIGURE 5.6

Xen for the x86 architecture. In the original Xen implementation [41] a guest OS could be XenoLinix,
XenoBSD, or XenoXP. The management OS dedicated to the execution of Xen control functions and privileged
instructions resides in Dom0; guest operating systems and applications reside in DomU.

guest OS and address spaces for applications running under this guest OS. Each domain runs on a virtual
x86 CPU. Dom0 is dedicated to the execution of Xen control functions and privileged instructions, and
DomU is a user domain (see Figure 5.6) .

The most important aspects of the Xen paravirtualization for virtual memory management, CPU
multiplexing, and I/O device management are summarized in Table 5.2 [41]. Efficient management
of the translation look-aside buffer (TLB), a cache for page table entries, requires either the ability to
identify the OS and the address space of every entry or to allow software management of the TLB.
Unfortunately, the x86 architecture does not support either the tagging of TLB entries or the software
management of the TLB. As a result, address space switching, when the VMM activates a different OS,
requires a complete TLB flush. This has a negative impact on performance.

The solution that was adopted was to load Xen in a 64 MB segment at the top of each address space
and delegate the management of hardware page tables to the guest OS with minimal intervention from
Xen. The 64 MB region occupied by Xen at the top of every address space is not accessible or not
remappable by the guest OS. When a new address space is created, the guest OS allocates and initializes
a page from its own memory, registers it with Xen, and relinquishes control of the write operations to
the VMM. Thus, a guest OS could only map pages it owns. On the other hand, it has the ability to batch
multiple page-update requests to improve performance. A similar strategy is used for segmentation.

The x86 Intel architecture supports four protection rings or privilege levels; virtually all OS kernels
run at Level 0, the most privileged one, and applications at Level 3. In Xen the VMM runs at Level 0,
the guest OS at Level 1, and applications at Level 3.

146 CHAPTER 5 Cloud Resource Virtualization

Table 5.2 Paravirtualization strategies for virtual memory management, CPU multiplexing, and
I/O devices for the original x86 Xen implementation.

Function Strategy

Paging A domain may be allocated discontinuous pages. A guest OS has direct access to page
tables and handles page faults directly for efficiency. Page table updates are batched
for performance and validated by Xen for safety.

Memory Memory is statically partitioned between domains to provide strong isolation.
XenoLinux implements a balloon driver to adjust domain memory.

Protection A guest OS runs at a lower priority level, in ring 1, while Xen runs in ring 0.
Exceptions A guest OS must register with Xen a description table with the addresses of exception

handlers previously validated. Exception handlers other than the page fault handler are
identical to x86 native exception handlers.

System calls To increase efficiency, a guest OS must install a “fast” handler to allow system calls from
an application to the guest OS and avoid indirection through Xen.

Interrupts A lightweight event system replaces hardware interrupts. Synchronous system calls from
a domain to Xen use hypercalls, and notifications are delivered using the
asynchronous event system.

Multiplexing A guest OS may run multiple applications.
Time Each guest OS has a timer interface and is aware of “real” and “virtual” time.
Network and

I/O devices
Data is transferred using asynchronous I/O rings. A ring is a circular queue of descriptors

allocated by a domain and accessible within Xen.
Disk access Only Dom0 has direct access to IDE and SCSI disks. All other domains access persistent

storage through the virtual block device (VBD) abstraction.

Applications make system calls using the so-called hypercalls processed by Xen. Privileged instruc-
tions issued by a guest OS are paravirtualized and must be validated by Xen. When a guest OS attempts
to execute a privileged instruction directly, the instruction fails silently.

Memory is statically partitioned between domains to provide strong isolation. To adjust domain
memory, XenoLinux implements a balloon driver, which passes pages between Xen and its own page
allocator. For the sake of efficiency, page faults are handled directly by the guest OS.

Xen schedules individual domains using the borrowed virtual time (BVT) scheduling algorithm
discussed in Section 6.11. BVT is a work conserving7 and low-latency wake-up scheduling algorithm.
BVT uses a virtual-time warping mechanism to support low-latency dispatch to ensure timely execution
when this is needed – for example, for timely delivery of TCP acknowledgments.

A guest OS must register with Xen a description table with the addresses of exception handlers for
validation. Exception handlers are identical to the native x86 handlers. The only one that does not follow
this rule is the page fault handler, which uses an extended stack frame to retrieve the faulty address
because the privileged register CR2, where this address is found, is not available to a guest OS. Each

7A work-conserving scheduling algorithm does not allow the processor to be idle when there is work to be done.

5.8 Case Study: Xen, a VMM Based on Paravirtualization 147

guest OS can validate and then register a “fast” exception handler executed directly by the processor
without the interference of Xen. A lightweight event system replaces hardware interrupts. Notifications
are delivered using this asynchronous event system. Each guest OS has a timer interface and is aware
of “real” and “virtual” time.

XenStore is a Dom0 process that supports a system-wide registry and naming service. It is imple-
mented as a hierarchical key-value storage; a watch function of the process informs listeners of changes
to the key in storage to which they have subscribed. XenStore communicates with guest VMs via shared
memory using Dom0 privileges rather than grant tables.

The Toolstack is another Dom0 component responsible for creating, destroying, and managing the
resources and privileges of VMs. To create a new VM a user provides a configuration file describing
memory and CPU allocations as well as device configuration. Then the Toolstack parses this file and
writes this information in the XenStore. Toolstack takes advantage of Dom0 privileges to map guest
memory, to load a kernel and virtual BIOS, and to set up initial communication channels with the
XenStore and with the virtual console when a new VM is created.

Xen defines abstractions for networking and I/O devices. Split drivers have a front-end in the DomU
and a back-end in Dom0; the two communicate via a ring in shared memory. Xen enforces access control
for the shared memory and passes synchronization signals. Access control lists (ACLs) are stored in
the form of grant tables, with permissions set by the owner of the memory.

Data for I/O and network operations move vertically through the system very efficiently using a
set of I/O rings (see Figure 5.7). A ring is a circular queue of descriptors allocated by a domain and
accessible within Xen. Descriptors do not contain data; the data buffers are allocated off-band by the
guest OS. Memory committed for I/O and network operations is supplied in a manner designed to
avoid “cross-talk,” and the I/O buffers holding the data are protected by preventing page faults of the
corresponding page frames.

Each domain has one or more virtual network interfaces (VIFs) that support the functionality of
a network interface card. A VIF is attached to a virtual firewall-router (VFR). Two rings of buffer
descriptors, one for packet sending and one for packet receiving, are supported. To transmit a packet,
a guest OS enqueues a buffer descriptor to the send ring, then Xen copies the descriptor and checks
safety and finally copies only the packet header, not the payload, and executes the matching
rules.

The rules of the form (<pattern>,<action>) require the action to be executed if the pattern is
matched by the information in the packet header. The rules can be added or removed by Dom0; they
ensure the demultiplexing of packets based on the destination IP address and port and, at the same time,
prevent spoofing of the source IP address. Dom0 is the only one allowed to directly access the physical
IDE (Integrated Drive Electronics) or SCSI (Small Computer System Interface) disks. All domains
other than Dom0 access persistent storage through a virtual block device (VBD) abstraction created and
managed under the control of Dom0.

Xen includes a device emulator, Qemu, to support unmodified commodity operating systems. Qemu
emulates a DMA8 and can map any page of the memory in a DomU. Each VM has its own instance of
Qemu that can run either as a Dom0 process or as a process of the VM.

8Direct Memory Access (DMA) is a hardware feature that allows I/O devices and other hardware subsystems direct access
to system memory without CPU involvement.

148 CHAPTER 5 Cloud Resource Virtualization

Consumer Request
(private pointer in Xen)

Producer Request
(shared pointer updated

by the guest OS)

Producer Response
(shared pointer updated

by Xen)

Consumer Response
(private pointer maintained by

the guest OS)Response queue

Request queue

Unused
descriptors

Outstanding
descriptors

Bridge

Driver domain Guest domain

Back-end Front-end

XEN

Network
interface

NIC

I/O channel

Event channel

(a)

(b)
FIGURE 5.7

Xen zero-copy semantics for data transfer using I/O rings. (a) The communication between a guest domain
and the driver domain over an I/O and an event channel; NIC is the Network Interface Controller. (b) The
circular ring of buffers.

5.9 Optimization of Network Virtualization in Xen 2.0 149

Xen, initially released in 2003, underwent significant changes in 2005, when Intel released the VT-x
processors. In 2006 Xen was adopted by Amazon for its EC2 service, and in 2008 Xen running on Intel’s
VT-d passed the ACPI S3 9 test. Xen support for Dom0 and DomU was added to the Linux kernel in 2011.

In 2008 the PCI pass-through was incorporated for Xen running on VT-d architectures. The PCI10

pass-through allows a PCI device, whether a disk controller, network interface card (NIC), graphic card,
or Universal Serial Bus (USB), to be assigned to a VM. This avoids the overhead of copying and allows
setting up of a driver domain to increase security and system reliability. A guest OS can exploit this
facility to access the 3D acceleration capability of a graphics card. To prepare a device for pass-through,
one must know its BDF.11

An analysis of VM performance for I/O-bound applications under Xen is reported in [298]. Two
Apache Web servers, each under a different VM, share the same server running Xen. The workload
generator sends requests for files of fixed size ranging from 1 KB to 100 KB. When the file size increases
from 1 KB to 10 KB and to 100 KB, the CPU utilization, throughput, data rate, and response time are,
respectively: (97.5%; 70.44%; 44.4%), (1,900; 1,104; 112) requests/s, (2,018; 11,048; 11,208) KBps,
and (1.52; 2.36; 2.08) msec. From the first group of results we see that for files 10 KB or larger the
system is I/O bound; the second set of results shows that the throughput measured in requests/s decreases
by less than 50% when the system becomes I/O bound, but the data rate increases by a factor of five
over the same range. The variation of the response time is quite small; it increases about 10% when the
file size increases by two orders of magnitude.

The paravirtualization strategy in Xen is different from the one adopted by a group at the University
of Washington, the creators of the Denali system [372]. Denali was designed to support a number
of virtual machines running network services one or more orders of magnitude larger than Xen. The
design of the Denali system did not target existing ABI. It does not support some features of potential
guest operating systems – for example, it does not support segmentation. Denali does not support
application multiplexing, running multiple applications under a guest OS, whereas Xen does.

Finally, a few words regarding the complexity of porting commodity operating systems to Xen. It is
reported that a total of about 3,000 lines of Linux code, or 1.36%, had to be modified; for Windows XP
this figure is 4,620, or about 0.04% [41].

5.9 Optimization of network virtualization in Xen 2.0
A virtual machine monitor introduces a significant network communication overhead. For example, it
is reported that the CPU utilization of a VMware Workstation 2.0 system running Linux 2.2.17 was 5
to 6 times higher than that of the native system (Linux 2.2.17) in saturating a 100 Mbps network [338].

9The Advanced Configuration and Power Interface (ACPI) specification is an open standard for device configuration and
power management by the operating system. It defines four Global “Gx” states and six Sleep “Sx” states. “S3” is referred to
as Standby, Sleep, or Suspend to RAM.
10PCI stands for Peripheral Component Interconnect and describes a computer bus for attaching hardware devices to a
computer. The PCI bus supports the functions found on a processor bus, but in a standardized format independent of any
particular processor. At startup time the operating system queries all PCI buses to identify the devices connected to the system
and the memory space, I/O space, interrupt lines, and so on needed by each device present.
11BDF stands for Bus:Device.Function and is used to describe PCI devices.

150 CHAPTER 5 Cloud Resource Virtualization

Driver domain Guest domain

Virtual
Interface

Back-end
Interface

NIC
Driver

Physical
NIC

Xen VMM

Bridge

Driver domain Guest domain

High Level
Virtual

Interface
Back-end
Interface

NIC
Driver

Physical
NIC

Xen VMM

I/O
channel channel

I/O

Offload
Driver

Bridge

(a) (b)

FIGURE 5.8

Xen network architecture. (a) The original architecture. (b) The optimized architecture.

In other words, handling the same amount of traffic as the native system to saturate the network, the
VMM executes a much larger number of instructions – 5 to 6 times larger.

Similar overheads are reported for other VMMs and, in particular, for Xen 2.0 [241,242]. To under-
stand the sources of the network overhead, we examine the basic network architecture of Xen [see
Figure 5.8(a)]. Recall that privileged operations, including I/O, are executed by Dom0 on behalf of
a guest operating system. In this context we shall refer to it as the driver domain called to execute
networking operations on behalf of the guest domain. The driver domain uses the native Linux driver
for the network interface controller, which in turn communicates with the physical NIC, also called the
network adapter. Recall from Section 5.8 that the guest domain communicates with the driver domain
through an I/O channel; more precisely, the guest OS in the guest domain uses a virtual interface to
send/receive data to/from the back-end interface in the driver domain.

Recall that a bridge in a LAN uses broadcast to identify the MAC address of a destination system.
Once this address is identified, it is added to a table. When the next packet for the same destination
arrives, the bridge uses the link layer protocol to send the packet to the proper MAC address rather than
broadcast it. The bridge in the driver domain performs a multiplexing/demultiplexing function; packets
received from the NIC have to be demultiplexed and sent to different VMs running under the VMM.
Similarly, packets arriving from multiple VMs have to be multiplexed into a single stream before being
transmitted to the network adaptor. In addition to bridging, Xen supports IP routing based on network
address translation (NAT).

Table 5.3 shows the ultimate effect of this longer processing chain for the Xen VMM as well as the
effect of optimizations [242]. The receiving and sending rates from a guest domain are roughly 30%
and 20%, respectively, of the corresponding rates of a native Linux application. Packet multiplexing/

5.9 Optimization of Network Virtualization in Xen 2.0 151

Table 5.3 A comparison of send and receive data rates for a native Linux system, the Xen driver
domain, an original Xen guest domain, and an optimized Xen guest domain.

System Receive Data Rate (Mbps) Send Data Rate (MBPS)

Linux 2,508 3,760
Xen driver 1,728 3,760
Xen guest 820 750
Optimized Xen guest 970 3,310

demultiplexing accounts for about 40% and 30% of the communication overhead for the incoming
traffic and for the outgoing traffic, respectively.

The Xen network optimization discussed in [242] covers optimization of (i) the virtual interface;
(ii) the I/O channel; and (iii) the virtual memory. The effects of these optimizations are significant for
the send data rate from the optimized Xen guest domain, an increase from 750 to 3, 310 Mbps, and
rather modest for the receive data rate, 970 versus 820 Mbps.

Next we examine briefly each optimization area, starting with the virtual interface. There is a tradeoff
between generality and flexibility on one hand and performance on the other hand. The original virtual
network interface provides the guest domain with the abstraction of a simple low-level network interface
supporting sending and receiving primitives. This design supports a wide range of physical devices
attached to the driver domain but does not take advantage of the capabilities of some physical NICs
such as checksum offload (e.g., TSO12) and scatter-gather DMA support.13 These features are supported
by the high-level virtual interface of the optimized system [see Figure 5.8(b)].

The next target of the optimization effort is the communication between the guest domain and the
driver domain. Rather than copying a data buffer holding a packet, each packet is allocated in a new
page and then the physical page containing the packet is remapped into the target domain. For example,
when a packet is received, the physical page is remapped to the guest domain. The optimization is
based on the observation that there is no need to remap the entire packet; for example, when sending a
packet, the network bridge needs to know only the MAC header of the packet. As a result, the optimized
implementation is based on an “out-of-band” channel used by the guest domain to provide the bridge
with the packet MAC header. This strategy contributed to a better than four times increase in the send
data rate compared with the nonoptimized version.

The third optimization covers virtual memory. Virtual memory in Xen 2.0 takes advantage of the
superpage and global page-mapping hardware features available on Pentium and Pentium Pro proces-
sors. A superpage increases the granularity of the dynamic address translation; a superpage entry covers
1, 024 pages of physical memory, and the address translation mechanism maps a set of contiguous
pages to a set of contiguous physical pages. This helps reduce the number of TLB misses. Obviously,

12TSO stands for TCP segmentation offload. This option enables the network adapter to compute the TCP checksum on
transmit and receive and save the host CPU the overhead for computing the checksum. Large packets have larger savings.
13Direct Memory Access (DMA) can also be used for memory-to-memory copying and can offload expensive memory
operations, such as scatter-gather operations, from the CPU to the dedicated DMA engine. Intel includes such engines on
high-end servers, called I/O Acceleration Technology (I/OAT).

152 CHAPTER 5 Cloud Resource Virtualization

all pages of a superpage belong to the same guest OS. When new processes are created, the guest OS
must allocate read-only pages for the page tables of the address spaces running under the guest OS, and
that forces the system to use traditional page mapping rather than superpage mapping. The optimized
version uses a special memory allocator to avoid this problem.

5.10 vBlades: paravirtualization targeting an x86-64 Itanium processor
To understand the impact of computer architecture on the ability to efficiently virtualize a given archi-
tecture, we discuss some of the findings of the vBlades project at HP-Laboratories [228]. The goal of
the vBlades project was to create a VMM for the Itanium family of IA64 Intel processors,14 capable of
supporting the execution of multiple operating systems in isolated protection domains with security and
privacy enforced by the hardware. The VMM was also expected to support optimal server utilization
and allow comprehensive measurement and monitoring for detailed performance analysis.

The discussion in Section 5.4 shows that to be fully virtualizable, the ISA of a processor must conform
to a set of requirements, but unfortunately the IA64 architecture does not meet these requirements,
and that fact made the vBlades project more challenging. We first review the features of the Itanium
processor that are important for virtualization, starting with the observation that the hardware supports
four privilege rings, PL0, PL1, PL2, and PL3. Privileged instructions can only be executed by the
kernel running at level PL0, whereas applications run at level PL3 and can only execute nonprivileged
instructions; PL2 and PL4 rings are generally not used. The VMM uses ring compression and runs itself
at PL0 and PL1 while forcing a guest OS to run at PL2. A first problem, called privilege leaking, is that
several nonprivileged instructions allow an application to determine the current privilege level (CPL);
thus, a guest OS may not accept to boot or run or may itself attempt to make use of all four privilege
rings.

Itanium was selected because of its multiple functional units and multithreading support. The Itanium
processor has 30 functional units: six general-purpose ALUs, two integer units, one shift unit, four data
cache units, six multimedia units, two parallel shift units, one parallel multiply, one population count,
three branch units, two 82-bit floating-point multiply-accumulate units, and two SIMD floating-point
multiply-accumulate units. A 128-bit instruction word contains three instructions; the fetch mechanism
can read up to two instruction words per clock from the L1 cache into the pipeline. Each unit can
execute a particular subset of the instruction set.

The hardware supports 64-bit addressing; it has 32 64-bit general-purpose registers numbered from
R0 to R31 and 96 automatically renumbered registers, R32 through R127, used by procedure calls. When
a procedure is entered, the alloc instruction specifies the registers the procedure can access by setting
the bits of a 7-bit field that controls the register usage. An illegal read operation from such a register out
of range returns a zero value, whereas an illegalwrite operation to it is trapped as an illegal instruction.

The Itanium processor supports isolation of the address spaces of different processes with eight
privileged region registers. The Processor Abstraction Layer (PAL) firmware allows the caller to set the

14Itanium is a processor developed jointly by HP and Intel and based on a new architecture, explicitly parallel instruction
computing (EPIC), that allows the processor to execute multiple instructions in each clock cycle. EPIC implements a form of
very long instruction word (VLIW) architecture in which a single instruction word contains multiple instructions. For more
information see www.dig64.org/about/Itanium2_white_paper_public.pdf.

5.10 vBlades: Paravirtualization Targeting an x86-64 Itanium Processor 153

values in the region register. The VMM intercepts the privileged instruction issued by the guest OS to
its PAL and partitions the set of address spaces among the guest OSs to ensure isolation. Each guest is
limited to 218 address spaces.

The hardware has an IVA register to maintain the address of the interruption vector table. The
entries in this table control both the interrupt delivery and the interrupt state collection. Different types
of interrupts activate different interrupt handlers pointed from this table, provided that the particular
interrupt is not disabled. Each guest OS maintains its own version of this vector table and has its own
IVA register. The hypervisor uses the guest OS IVA register to give control to the guest interrupt handler
when an interrupt occurs.

First, let’s discuss CPU virtualization. When a guest OS attempts to execute a privileged instruction,
the VMM traps and emulates the instruction. For example, when the guest OS uses the rsm psr.i
instruction to turn off delivery of a certain type of interrupt, the VMM does not disable the interrupt
but records the fact that interrupts of that type should not be delivered to the guest OS, and in this case
the interrupt should be masked. There is a slight complication related to the fact that the Itanium does
not have an instruction register (IR) and the VMM has to use state information to determine whether
an instruction is privileged. Another complication is caused by the register stack engine (RSE), which
operates concurrently with the processor and may attempt to access memory (load or store) and generate
a page fault. Normally, the problem is solved by setting up a bit indicating that the fault is due to RSE
and, at the same time, the RSE operations are disabled. The handling of this problem by the VMM is
more intricate.

A number of privileged-sensitive instructions behave differently as a function of the privilege level.
The VMM replaces each one of them with a privileged instruction during the dynamic transformation
of the instruction stream. Among the instructions in this category are:

• cover, which saves stack information into a privileged register. The VMM replaces it with a
break.b instruction.

• thash and ttag, which access data from privileged virtual memory control structures and have
two registers as arguments. The VMM takes advantage of the fact that an illegal read returns a zero
and an illegal write to a register in the range 32 to 127 is trapped and translates these instructions
as:
thash Rx=Ry –> tpa Rx=R(y+64) and ttag Rx=Ry –> tak Rx=R(y+64), where
0 � y � 64.

• Access to performance data from performance data registers is controlled by a bit in the processor
status register with the PSR.sp instruction.

Memory virtualization is guided by the realization that a VMM should not be involved in most
memory read and write operations to prevent a significant degradation of performance, but at the
same time the VMM should exercise tight control and prevent a guest OS from acting maliciously. The
vBlades VMM does not allow a guest OS to access the memory directly. It inserts an additional layer of
indirection called metaphysical addressing between virtual and real addressing. A guest OS is placed
in metaphysical addressing mode. If the address is virtual, the VMM first checks to see whether the
guest OS is allowed to access that address and, if it is, it provides the regular address translation. If
the address is physical the VMM is not involved. The hardware distinguishes between virtual and real
addresses using bits in the processor status register.

154 CHAPTER 5 Cloud Resource Virtualization

5.11 A performance comparison of virtual machines
We have seen that a VMM such as Xen introduces additional overhead and negatively affects performance
[41,241,242]. The topic of this section is a quantitative analysis of the performance of VMs. We compare
the performance of two virtualization techniques with a standard operating system: a plain-vanilla
Linux referred to as “the base” system. The two VM systems are Xen, based on paravirtualization, and
OpenVZ [281].

First we take a closer look at OpenVZ, a system based on OS-level virtualization. OpenVZ uses a
single patched Linux kernel. The guest operating systems in different containers15 may be different
distributions but must use the same Linux kernel version that the host uses. The lack of flexibility of the
approach for virtualization in OpenVZ is compensated by lower overhead.

The memory allocation in OpenVZ is more flexible than in the case of paravirtualization; memory
not used in one virtual environment can be used by others. The system uses a common file system. Each
virtual environment is a directory of files isolated using chroot. To start a new virtual machine, one
needs to copy the files from one directory to another, create a config file for the virtual machine, and
launch the VM.

OpenVZ has a two-level scheduler: At the first level, the fair-share scheduler allocates CPU time
slices to containers based on cpuunits values; the second level is a standard Linux scheduler that
decides what process to run in that container. The I/O scheduler also has two levels; each container has
an I/O priority, and the scheduler distributes the available I/O bandwidth according to the priorities.

The discussion in [281] is focused on the user’s perspective, thus the performance measures ana-
lyzed are the throughput and the response time. The general question is whether consolidation of the
applications and servers is a good strategy for cloud computing. The specific questions examined are:

• How does the performance scale up with the load?
• What is the impact of a mix of applications?
• What are the implications of the load assignment on individual servers?

There is ample experimental evidence that the load placed on system resources by a single application
varies significantly in time. A time series displaying CPU consumption of a single application in time
clearly illustrates this fact. As we all know, this phenomenon justifies the need for CPU multiplexing
among threads/processes supported by an operating system. The concept of application and server
consolidation is an extension of the idea of creating an aggregate load consisting of several applications
and aggregating a set of servers to accommodate this load. Indeed, the peak resource requirements of
individual applications are very unlikely to be synchronized, and the aggregate load tends to lead to a
better average resource utilization.

The application used in [281] is a two-tier system consisting of an Apache Web server and a MySQL
database server. A client of this application starts a session as the user browses through different items in
the database, requests information about individual items, and buys or sells items. Each session requires
the creation of a new thread; thus, an increased load means an increased number of threads. To understand
the potential discrepancies in performance among the three systems, a performance-monitoring tool

15A container in OpenVZ emulates a separate physical server. It has its own files, users, process tree, IP address, shared
memory, semaphores, and messages. Each container can have its own disk quotas.

5.11 A Performance Comparison of Virtual Machines 155

Web
server

Web
server

Web
server

Web
server

MySQL
server

MySQL
server

MySQL
server

MySQL
server

Web
server

MySQL
server

Web
server

MySQL
server

Web
server

MySQL
server

Web
server

MySQL
server

Web
server

MySQL
server

Web
server

Web
server

Web
server

Web
server

MySQL
server

MySQL
server

MySQL
server

MySQL
server

Web
server

Web
server

Web
server

Web
server

MySQL
server

MySQL
server

MySQL
server

MySQL
server

Web
server

MySQL
server

Xen

Xen

Xen

Linux

Linux

Linux

OpenVZ

OpenVZ

OpenVZ

(a)

(c)

(b)

FIGURE 5.9

The setup for the performance comparison of a native Linux system with the OpenVZ and Xen systems. The
applications are a Web server and a MySQL database server. (a) In the first experiment, the Web and the
DB share a single system. (b) In the second experiment, the Web and the DB run on two different systems.
(c) In the third experiment, the Web and the DB run on two different systems and each has four instances.

reports the counters that allow the estimation of (i) the CPU time used by a binary; (ii) the number of
L2-cache misses; and (iii) the number of instructions executed by a binary.

The experimental setups for three different experiments are shown in Figure 5.9 . In the first group
of experiments the two tiers of the application, the Web and the DB, run on a single server for the
Linux, the OpenVZ, and the Xen systems. When the workload increases from 500 to 800 threads, the
throughput increases linearly with the workload. The response time increases only slightly for the base
system and for the OpenVZ system, whereas it increases 600% for the Xen system. For 800 threads the
response time of the Xen system is four times longer than the time for OpenVZ. The CPU consumption
grows linearly with the load in all three systems; the DB consumption represents only 1–4% of it.

156 CHAPTER 5 Cloud Resource Virtualization

For a given workload, the Web-tier CPU consumption for the OpenVZ system is close to that of the
base system and is about half of that for the Xen system. The performance analysis tool shows that the
OpenVZ execution has two times more L2-cache misses than the base system, whereas the Xen Dom0
has 2.5 times more and the Xen application domain has 9 times more. Recall that the base system and the
OpenVZ run a Linux OS and the sources of cache misses can be compared directly, whereas Xen runs a
modified Linux kernel. For the Xen-based system the procedure hypervisor_callback, invoked when
an event occurs, and the procedure evtchn_do_upcall, invoked to process an event, are responsible for
32% and 44%, respectively, of the L2-cache misses. The percentage of the instructions invoked by these
two procedures are 40% and 8%, respectively. Most of the L2-cache misses in OpenVZ and the base
system occur in (i) a procedure called do_anonymous_pages, used to allocate pages for a particular
application with the percentage of cache misses 32% and 25%, respectively; (ii) the procedures called
_copy_to_user_ll and _copy_ f rom_user_ll, used to copy data from user to system buffers and back
with the percentage of cache misses (12+7)% and (10+1)%, respectively. The first figure refers to the
copying from user to system buffers and the second to copying from system buffers to the user space.

The second group of experiments uses two servers, one for the Web and the other for the DB
application, for each one of the three systems. When the load increases from 500 to 800 threads the
throughput increases linearly with the workload. The response time of the Xen system increases only
114%, compared with 600% reported for the first experiments. The CPU time of the base system, the
OpenVZ system, the Xen Dom0, and the User Domain are similar for the Web application. For the DB
application, the CPU time of the OpenVZ system is twice as long as that of the base system, whereas
Dom0 and the User Domain require CPU times of 1.1 and 2.5 times longer than the base system. The
L2-cache misses for the Web application relative to the base system are the same for OpenVZ, 1.5 times
larger for Dom0 of Xen, and 3.5 times larger for the User Domain. The L2-cache misses for the DB
application relative to the base system are 2 times larger for the OpenVZ, 3.5 larger for Dom0 of Xen,
and 7 times larger for the User Domain.

The third group of experiments uses two servers, one for the Web and the other for the DB application,
for each one of the three systems but runs four instances of the Web and the DB application on the two
servers. The throughput increases linearly with the workload for the range used in the previous two
experiments, from 500 to 800 threads. The response time remains relatively constant for OpenVZ and
increases 5 times for Xen.

The main conclusion drawn from these experiments is that the virtualization overhead of Xen is con-
siderably higher than that of OpenVZ and that this is due primarily to L2-cache misses. The performance
degradation when the workload increases is also noticeable for Xen. Another important conclusion is
that hosting multiple tiers of the same application on the same server is not an optimal solution.

5.12 The darker side of virtualization
Can virtualization empower the creators of malware16 to carry out their mischievous activities with
impunity and with minimal danger of being detected? How difficult is it to implement such a system?

16Malware, an abbreviation of malicious software, is software designed specifically to circumvent authorization mechanisms
and gain access to a computer system, gather private information, block access to a system, or disrupt the normal operation
of a system. Computer viruses, worms, spyware, and Trojan horses are examples of malware.

5.12 The Darker Side of Virtualization 157

Hardware

Virtual machine-based rootkit

Operating
system (OS)

Application

Hardware

Virtual machine monitor

Guest OS

Virtual machine-based rootkit

Malicious
OS

Malicious
OS

Application

(a) (b)

FIGURE 5.10

The insertion of a virtual machine-based rootkit (VMBR) as the lowest layer of the software stack running on
the physical hardware. (a) Below an operating system; (b) Below a legitimate virtual machine monitor. The
VMBR enables a malicious OS to run surreptitiously and makes it invisible to the genuine or the guest OS
and to the application.

What are the means to prevent this type of malware to be put in place? The answers to these questions
are discussed in this section.

It is well understood that in a layered structure a defense mechanism at some layer can be disabled
by malware running a layer below it. Thus, the winner in the continuous struggle between the attackers
and the defenders of a computing system is the one in control of the lowest layer of the software stack
– the one that controls the hardware (see Figure 5.10).

Recall that a VMM allows a guest operating system to run on virtual hardware. The VMM offers to
the guest operating systems a hardware abstraction and mediates its access to the physical hardware. We
argued that a VMM is simpler and more compact than a traditional operating system; thus, it is more
secure. But what if the VMM itself is forced to run above another software layer so that it is prevented
from exercising direct control of the physical hardware?

A 2006 paper [194] argues that it is feasible to insert a “rogue VMM” between the physical hardware
and an operating system. Such a rogue VMM is called a virtual machine-based rootkit (VMBR). The
term rootkit refers to malware with privileged access to a system. The name comes from root, the most
privileged account on a Unix system, and kit, a set of software components.

It is also feasible to insert the VMBR between the physical hardware and a “legitimate VMM.” As
a virtual machine running under a legitimate VMM sees virtual hardware, the guest OS will not notice
any change of the environment; so the only trick is to present the legitimate VMM with a hardware
abstraction, rather than allow it to run on the physical hardware.

Before we address the question of how such an insertion is possible, we should point out that in this
approach the malware runs either inside a VMM or with the support of a VMM; but a VMM is a very

158 CHAPTER 5 Cloud Resource Virtualization

potent engine for the malware. It prevents the software of the guest operating system or the application
from detecting malicious activities. A VMBR can record key strokes, system state, data buffers sent to
or received from the network, and data to be written to or read from the disk with impunity; moreover,
it can change any data at will.

The only way for a VMBR to take control of a system is to modify the boot sequence and to first load
the malware and only then load the legitimate VMM or the operating system. This is only possible if
the attacker has root privileges. Once the VMBR is loaded it must also store its image on the persistent
storage.

The VMBR can enable a separate malicious OS to run surreptitiously and make this malicious
OS invisible to the guest OS and to the application running under it. Under the protection of the
VMBR, the malicious OS could (i) observe the data, the events, or the state of the target system;
(ii) run services such as spam relays or distributed denial-of-service attacks; or (iii) interfere with the
application.

Proof-of-concept VMBRs to subvert Windows XP and Linux and several services based on this
platform are described in [194]. We should stress that modifying the boot sequence is by no means an
easy task, and once an attacker has root privileges he or she is in total control of a system.

5.13 Software fault isolation
Software fault isolation (SFI) offers a technical solution for sandboxing binary code of questionable
provenance that can affect security in cloud computing. Insecure and tampered VM images are one
of the security threats because binary codes of questionable provenance for native plug-ins to a Web
browser can pose a security threat when Web browsers are used to access cloud services.

A recent paper [322] discusses the application of the sandboxing technology for two modern CPU
architectures, ARM and 64-bit x86. ARM is a load/store architecture with 32-bit instruction and 16
general-purpose registers. It tends to avoid multicycle instructions, and it shares many RISC architecture
features, but (a) it supports a “thumb” mode with 16-bit instruction extensions; (b) it has complex
addressing modes and a complex barrel shifter; and (c) condition codes can be used to predicate most
instructions. In the x86-64 architecture, general-purpose registers are extended to 64 bits, with an r
replacing the e to identify the 64 versus 32-bit registers (e.g., rax instead of eax). There are eight new
general-purpose registers, named r8–r15. To allow legacy instructions to use these additional registers,
x86-64 defines a set of new prefix bytes to use for register selection.

This SFI implementation is based on the previous work of the same authors on Google Native
Client (NC) and assumes an execution model in which a trusted run-time shares a process with an
untrusted multithreaded plug-in. The rules for binary code generation of the untrusted plug-in are:
(i) the code section is read-only and is statically linked; (ii) the code is divided into 32-byte bundles,
and no instruction or pseudo-instruction crosses the bundle boundary; (iii) the disassembly starting at
the bundle boundary reaches all valid instructions; and (iv) all indirect flow-control instructions are
replaced by pseudo-instructions that ensure address alignment to bundle boundaries.

The features of the SFI for the Native Client on the x86-32, x86-64, and ARM are summarized in
Table 5.4 [322]. The control flow and store sandboxing for the ARM SFI incur less then 5% average
overhead, and those for x86-64 SFI incur less than 7% average overhead.

5.15 History Notes 159

Table 5.4 The features of the SFI for the native client on the x86-32, x86-64, and ARM. ILP
stands for instruction-level parallelism.

Feature/Architecture x86-32 x86-64 ARM

Addressable memory 1 GB 4 GB 1 GB
Virtual base address Any 44 GB 0
Data model ILP 32 ILP 32 ILP 32
Reserved registers 0 of 8 1 of 16 0 of 16
Data address mask None Implicit in result width Explicit instruction
Control address mask Explicit instruction Explicit instruction Explicit instruction
Bundle size (bytes) 32 32 16
Data in text segment Forbidden Forbidden Allowed
Safe address registers All RSP, RBP SP
Out-of-sandbox store Trap Wraps mod 4 GB No effect
Out-of-sandbox jump Trap Wraps mod 4 GB Wraps mod 1 GB

5.14 Further reading
A good introduction to virtualization principles can be found in a recent text of Saltzer and Kaashoek
[312] and in [141]. Virtual machines are dissected in a paper by Smith and Nair [325]. An insightful dis-
cussion of virtual machine monitors is provided by the paper of Rosenblum and Garfinkel [308]. Several
papers [41,84,241,242] discuss in depth the Xen VMM and analyze its performance. The Denali sys-
tem is presented in [372]. Modern systems such as Linux Vserver [214], OpenVZ (Open VirtualiZation)
[274], FreeBSD Jails [124], and Solaris Zones [296] implement operating system-level virtualization
technologies.

A paper [281] compares the performance of two virtualization techniques with a standard operating
system. The vBlades project at HP-Laboratories is presented in [228].

A 2001 paper [79] argues that virtualization allows new services to be added without modifying the
operating system. Such services are added below the operating system level, but this process creates a
semantic gap between the virtual machine and these services. A survey of security issues in virtual sys-
tems is provided by [389]. Object-oriented VMM design is discussed [80]. Several references including
[165,199,271,301,342,371] discuss virtualization and system architecture.

5.15 History notes
Virtual memory was the first application of virtualization concepts to commercial computers. It allowed
multiprogramming and eliminated the need for users to tailor their applications to the physical memory
available on individual systems. Paging and segmentation are the two mechanisms supporting virtual
memory. Paging was developed for the Atlas Computer, built in 1959 at the University of Manchester.
Independently, the Burroughs Corporation developed the B5000, the first commercial computer with

160 CHAPTER 5 Cloud Resource Virtualization

virtual memory, and released it in 1961. The virtual memory of the B5000 used segmentation rather
than paging.

In 1967 IBM introduced the 360/67, the first IBM system with virtual memory, expected to run
on a new operating system called TSS. Before TSS was released, an operating system called CP-67
was created. CP-67 gave the illusion of several standard IBM 360 systems without virtual memory.
The first VMM supporting full virtualization was the CP-40 system, which ran on a S/360-40 that was
modified at the IBM Cambridge Scientific Center to support Dynamic Address Translation, a key feature
that allowed virtualization. In CP-40, the hardware’s supervisor state was virtualized as well, allowing
multiple operating systems to run concurrently in separate virtual machine contexts.

In this early age of computing, virtualization was driven by the need to share very expensive hardware
among a large population of users and applications. The VM/370 system, released in 1972 for large IBM
mainframes, was very successful. It was based on a reimplementation of CP/CMS. In the VM/370 a new
virtual machine was created for every user, and this virtual machine interacted with the applications.
The VMM managed hardware resources and enforced the multiplexing of resources. Modern-day IBM
mainframes, such as the zSeries line, retain backward compatibility with the 1960s-era IBM S/360 line.

The production of microprocessors, coupled with advancements in storage technology, contributed
to the rapid decrease of hardware costs and led to the introduction of personal computers at one end of
the spectrum and large mainframes and massively parallel systems at the other end. The hardware and
the operating systems of the 1980s and 1990s gradually limited virtualization and focused instead on
efficient multitasking, user interfaces, the support for networking, and security problems brought in by
interconnectivity.

The advancements in computer and communication hardware and the explosion of the Internet, par-
tially due to the success of the World Wide Web at the end of the 1990s, renewed interest in virtualization
to support server security and isolation of services. In their review paper, Rosenbloom and Grafinkel write
[308]: “VMMs give operating system developers another opportunity to develop functionality no longer
practical in today’s complex and ossified operating systems, where innovation moves at a geologic pace.”

5.16 Exercises and problems
Problem 1. Identify the milestones in the evolution of operating systems during the half century from

1960 to 2010 and comment on this statement from [308]: “VMMs give operating system
developers another opportunity to develop functionality no longer practical in today’s
complex and ossified operating systems, where innovation moves at a geologic pace.”

Problem 2. Virtualization simplifies the use of resources, isolates users from one another, and supports
replication and mobility, but exacts a price in terms of performance and cost. Analyze
each one of these aspects for (i) memory virtualization, (ii) processor virtualization, and
(iii) virtualization of a communication channel.

Problem 3. Virtualization of the processor combined with virtual memory management poses multiple
challenges. Analyze the interaction of interrupt handling and paging.

Problem 4. In Section 5.5 we stated that a VMM is a much simpler and better-specified system than a
traditional operating system. The security vulnerability of VMMs is considerably reduced

5.16 Exercises and Problems 161

because the systems expose a much smaller number of privileged functions. Research the
literature to gather arguments in support of these affirmations. Compare the number of
lines of code and system calls for several operating systems, including Linux, Solaris,
FreeBSD, Ubuntu, AIX, and Windows, with the corresponding figures for several system
virtual machines in Table 5.1.

Problem 5. In Section 5.6 we state that a VMM for a processor can be constructed if the set of sensitive
instructions is a subset of the privileged instructions of that processor. Identify the set of
sensitive instructions for the x86 architecture and discuss the problem each one of these
instructions poses.

Problem 6. Table 5.3 summarizes the effects of Xen network performance optimization reported in
[242]. The send data rate of a guest domain is improved by a factor of more than 4, whereas
the improvement of the receive data rate is very modest. Identify several possible reasons
for this discrepancy.

Problem 7. In Section 5.8 we note that several operating systems, including Linux, Minix, NetBSD,
FreeBSD, NetWare, and OZONE, can operate as paravirtualized Xen guest operating
systems running on x86, x86-64, Itanium, and ARM architectures, whereas VMware EX
Server supports full virtualization of x86 architecture. Analyze how VMware provides the
functions discussed in Table 5.2 for Xen.

Problem 8. In 2012 Intel and HP announced that the Itanium architecture will be discontinued. Review
the architecture, discussed in Section 5.10, and identify several possible reasons for this
decision.

Problem 9. Read [281] and analyze the results of the performance comparison discussed in
Section 5.11.

This page is intentionally left blank

6
CHAPTER

Cloud Resource Management
and Scheduling

Resource management is a core function of any man-made system. It affects the three basic criteria for
the evaluation of a system: performance, functionality, and cost. An inefficient resource management
has a direct negative effect on performance and cost and an indirect effect on the functionality of a
system. Indeed, some functions provided by the system may become too expensive or may be avoided
due to poor performance.

A cloud is a complex system with a very large number of shared resources subject to unpredictable
requests and affected by external events it cannot control. Cloud resource management requires com-
plex policies and decisions for multi-objective optimization. Cloud resource management is extremely
challenging because of the complexity of the system, which makes it impossible to have accurate global
state information, and because of the unpredictable interactions with the environment.

The strategies for resource management associated with the three cloud delivery models, IaaS, PaaS,
and SaaS, differ from one another. In all cases the cloud service providers are faced with large, fluctuating
loads that challenge the claim of cloud elasticity. In some cases, when a spike can be predicted, the
resources can be provisioned in advance, e.g., for Web services subject to seasonal spikes. For an
unplanned spike, the situation is slightly more complicated. Auto Scaling can be used for unplanned
spike loads, provided that (a) there is a pool of resources that can be released or allocated on demand
and (b) there is a monitoring system that allows a control loop to decide in real time to reallocate
resources. Auto Scaling is supported by PaaS services such as Google App Engine. Auto Scaling for
IaaS, discussed in Section 6.14, is complicated due to the lack of standards.

It has been argued for some time that in a cloud, where changes are frequent and unpredictable,
centralized control is unlikely to provide continuous service and performance guarantees. Indeed, cen-
tralized control cannot provide adequate solutions to the host of cloud management policies that have
to be enforced. Autonomic policies are of great interest due to the scale of the system, the large number
of service requests, the large user population, and the unpredictability of the load. The ratio of the mean
to the peak resource needs can be very large.

We start our discussion with an overview of policies and mechanisms for cloud resource management
in Section 6.1. A control theoretic approach to resource allocation is discussed in Sections 6.2, 6.3, and
6.4. A machine learning algorithm for coordination of specialized autonomic performance managers
is presented in Section 6.5. In Section 6.6 we discuss a utility model for resource allocation for a Web
service. Next we present resource bundling and combinatorial auctions in Section 6.7. The fair queuing,
start-time fair queuing, and borrowed virtual time scheduling algorithms are analyzed in Sections 6.9,
6.10, and 6.11, respectively. Scheduling with deadlines and the impact of application scaling on resource
management are presented in Sections 6.12, 6.13, and 6.14, respectively.

Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00006-3
© 2013 Elsevier Inc. All rights reserved.

163

164 CHAPTER 6 Cloud Resource Management and Scheduling

6.1 Policies and mechanisms for resource management
A policy typically refers to the principal guiding decisions, whereas mechanisms represent the means to
implement policies. Separation of policies from mechanisms is a guiding principle in computer science.
Butler Lampson [208] and Per Brinch Hansen [154] offer solid arguments for this separation in the
context of operating system design.

Cloud resource management policies can be loosely grouped into five classes:

1. Admission control.
2. Capacity allocation.
3. Load balancing.
4. Energy optimization.
5. Quality-of-service (QoS) guarantees.

The explicit goal of an admission control policy is to prevent the system from accepting workloads in
violation of high-level system policies; for example, a system may not accept an additional workload that
would prevent it from completing work already in progress or contracted. Limiting the workload requires
some knowledge of the global state of the system. In a dynamic system such knowledge, when available,
is at best obsolete. Capacity allocation means to allocate resources for individual instances; an instance
is an activation of a service. Locating resources subject to multiple global optimization constraints
requires a search of a very large search space when the state of individual systems changes rapidly.

Load balancing and energy optimization can be done locally, but global load-balancing and energy
optimization policies encounter the same difficulties as the one we have already discussed. Load bal-
ancing and energy optimization are correlated and affect the cost of providing the services. Indeed, it
was predicted that by 2012 up to 40% of the budget for IT enterprise infrastructure would be spent on
energy [104].

The common meaning of the term load balancing is that of evenly distributing the load to a set of
servers. For example, consider the case of four identical servers, A, B, C , and D, whose relative loads
are 80%, 60%, 40%, and 20%, respectively, of their capacity. As a result of perfect load balancing,
all servers would end with the same load − 50% of each server’s capacity. In cloud computing a
critical goal is minimizing the cost of providing the service and, in particular, minimizing the energy
consumption. This leads to a different meaning of the term load balancing; instead of having the load
evenly distributed among all servers, we want to concentrate it and use the smallest number of servers
while switching the others to standby mode, a state in which a server uses less energy. In our example,
the load from D will migrate to A and the load from C will migrate to B; thus, A and B will be loaded
at full capacity, whereas C and D will be switched to standby mode. Quality of service is that aspect of
resource management that is probably the most difficult to address and, at the same time, possibly the
most critical to the future of cloud computing.

As we shall see in this section, often resource management strategies jointly target performance
and power consumption. Dynamic voltage and frequency scaling (DVFS)1 techniques such as Intel’s

1DVFS is a power management technique to increase or decrease the operating voltage or frequency of a processor in order
to increase the instruction execution rate and, respectively, reduce the amount of heat generated and to conserve power.

6.1 Policies and Mechanisms for Resource Management 165

Table 6.1 The normalized performance and energy consumption function of the processor
speed. The performance decreases at a lower rate than does the energy when the clock rate
decreases.
CPU Speed (GHz) Normalized Energy (%) Normalized Performance (%)

0.6 0.44 0.61
0.8 0.48 0.70
1.0 0.52 0.79
1.2 0.58 0.81
1.4 0.62 0.88
1.6 0.70 0.90
1.8 0.82 0.95
2.0 0.90 0.99
2.2 1.00 1.00

SpeedStep and AMD’s PowerNow lower the voltage and the frequency to decrease power consumption.2

Motivated initially by the need to save power for mobile devices, these techniques have migrated to
virtually all processors, including the ones used for high-performance servers.

As a result of lower voltages and frequencies, the performance of processors decreases, but at a
substantially slower rate [213] than the energy consumption. Table 6.1 shows the dependence of the
normalized performance and the normalized energy consumption of a typical modern processor on
clock rate. As we can see, at 1.8 GHz we save 18% of the energy required for maximum performance,
whereas the performance is only 5% lower than the peak performance, achieved at 2.2 GHz. This seems
a reasonable energy-performance tradeoff!

Virtually all optimal – or near-optimal – mechanisms to address the five classes of policies do not
scale up and typically target a single aspect of resource management, e.g., admission control, but ignore
energy conservation. Many require complex computations that cannot be done effectively in the time
available to respond. The performance models are very complex, analytical solutions are intractable,
and the monitoring systems used to gather state information for these models can be too intrusive
and unable to provide accurate data. Many techniques are concentrated on system performance in
terms of throughput and time in system, but they rarely include energy tradeoffs or QoS guarantees.
Some techniques are based on unrealistic assumptions; for example, capacity allocation is viewed as
an optimization problem, but under the assumption that servers are protected from overload.

Allocation techniques in computer clouds must be based on a disciplined approach rather than ad
hoc methods. The four basic mechanisms for the implementation of resource management policies are:

• Control theory. Control theory uses the feedback to guarantee system stability and predict transient
behavior [185,202], but can be used only to predict local rather than global behavior. Kalman filters
have been used for unrealistically simplified models.

2The power consumption P of a CMOS-based circuit is P = α ·Ceff · V 2 · f , with α = the switching factor, Ceff = the effective
capacitance, V = the operating voltage, and f = the operating frequency.

166 CHAPTER 6 Cloud Resource Management and Scheduling

• Machine learning. A major advantage of machine learning techniques is that they do not need a
performance model of the system [353]. This technique could be applied to coordination of several
autonomic system managers, as discussed in [187].

• Utility-based. Utility-based approaches require a performance model and a mechanism to correlate
user-level performance with cost, as discussed in [9].

• Market-oriented/economic mechanisms. Such mechanisms do not require a model of the system,
e.g., combinatorial auctions for bundles of resources discussed in [333].

A distinction should be made between interactive and noninteractive workloads. The management
techniques for interactive workloads, e.g., Web services, involve flow control and dynamic application
placement, whereas those for noninteractive workloads are focused on scheduling. A fair amount of
work reported in the literature is devoted to resource management of interactive workloads, some to
noninteractive, and only a few, e.g., [344], to heterogeneous workloads, a combination of the two.

6.2 Applications of control theory to task scheduling on a cloud
Control theory has been used to design adaptive resource management for many classes of applications,
including power management [187], task scheduling [222], QoS adaptation in Web servers [3], and
load balancing. The classical feedback control methods are used in all these cases to regulate the key
operating parameters of the system based on measurement of the system output; the feedback control in
these methods assumes a linear time-invariant system model and a closed-loop controller. This controller
is based on an open-loop system transfer function that satisfies stability and sensitivity constraints.

A technique to design self-managing systems based on concepts from control theory is discussed
in [369]. The technique allows multiple QoS objectives and operating constraints to be expressed
as a cost function and can be applied to stand-alone or distributed Web servers, database servers,
high-performance application servers, and even mobile/embedded systems. The following discussion
considers a single processor serving a stream of input requests. We attempt to minimize a cost function
that reflects the response time and the power consumption. Our goal is to illustrate the methodology for
optimal resource management based on control theory concepts. The analysis is intricate and cannot be
easily extended to a collection of servers.

Control Theory Principles. We start our discussion with a brief overview of control theory principles
one could use for optimal resource allocation. Optimal control generates a sequence of control inputs
over a look-ahead horizon while estimating changes in operating conditions. A convex cost function has
arguments x(k), the state at step k, and u(k), the control vector; this cost function is minimized, subject
to the constraints imposed by the system dynamics. The discrete-time optimal control problem is to
determine the sequence of control variables u(i), u(i + 1), . . . , u(n − 1) to minimize the expression

J (i) = �(n, x(n)) +
n−1∑
k=i

Lk(x(k), u(k)), (6.1)

where �(n, x(n)) is the cost function of the final step, n, and Lk(x(k), u(k)) is a time-varying cost
function at the intermediate step k over the horizon [i, n]. The minimization is subject to the constraints

x(k + 1) = f k(x(k), u(k)), (6.2)

6.2 Applications of Control Theory to Task Scheduling on a Cloud 167

Predictive
filter

Optimal
controller

Queuing
dynamics

disturbance

state feedback q(k)

external
traffic

r s

u* (k)

forecast

)kλ

)kω

(

(

FIGURE 6.1

The structure of an optimal controller described in [369]. The controller uses the feedback regarding the
current state as well as the estimation of the future disturbance due to environment to compute the optimal
inputs over a finite horizon. The two parameters r and s are the weighting factors of the performance index.

where x(k + 1), the system state at time k + 1, is a function of x(k), the state at time k, and of u(k), the
input at time k; in general, the function f k is time-varying; thus, its superscript.

One of the techniques to solve this problem is based on the Lagrange multiplier method of finding
the extremes (minima or maxima) of a function subject to constrains. More precisely, if we want to
maximize the function g(x, y) subject to the constraint h(x, y) = k, we introduce a Lagrange multiplier
λ. Then we study the function

�(x, y, λ) = g(x, y) + λ × [h(x, y) − k]. (6.3)

A necessary condition for the optimality is that (x, y, λ) is a stationary point for �(x, y, λ). In other
words,

∇x,y,λ�(x, y, λ) = 0 or

(
∂�(x, y, λ)

∂x
,
∂�(x, y, λ)

∂ y
,
∂�(x, y, λ)

∂λ

)
= 0. (6.4)

The Lagrange multiplier at time step k is λk and we solve Eq. (6.4) as an unconstrained optimization
problem. We define an adjoint cost function that includes the original state constraints as the Hamiltonian
function H , then we construct the adjoint system consisting of the original state equation and the costate
equation governing the Lagrange multiplier. Thus, we define a two-point boundary problem3; the state
xk develops forward in time whereas the costate occurs backward in time.

A Model Capturing Both QoS and Energy Consumption for a Single-Server System. Now we
turn our attention to the case of a single processor serving a stream of input requests. To compute the
optimal inputs over a finite horizon, the controller in Figure 6.1 uses feedback regarding the current
state, as well as an estimation of the future disturbance due to the environment. The control task is
solved as a state regulation problem updating the initial and final states of the control horizon.

We use a simple queuing model to estimate the response time. Requests for service at processor P are
processed on a first-come, first-served (FCFS) basis. We do not assume a priori distributions of the arrival

3A boundary value problem has conditions specified at the extremes of the independent variable, whereas an initial value
problem has all the conditions specified at the same value of the independent variable in the equation.

168 CHAPTER 6 Cloud Resource Management and Scheduling

process and of the service process; instead, we use the estimate �̂(k) of the arrival rate �(k) at time k.
We also assume that the processor can operate at frequencies u(k) in the range u(k) ∈ [umin, umax] and
call ĉ(k) the time to process a request at time k when the processor operates at the highest frequency
in the range, umax . Then we define the scaling factor α(k) = u(k)/umax and we express an estimate of
the processing rate N (k) as α(k)/ĉ(k).

The behavior of a single processor is modeled as a nonlinear, time-varying, discrete-time state equa-
tion. If Ts is the sampling period, defined as the time difference between two consecutive observations of
the system, e.g., the one at time (k +1) and the one at time k, then the size of the queue at time (k +1) is

q(k + 1) = max

{[
q(k) +

(
�̂(k) − u(k)

ĉ(k) × umax

)
× Ts

]
, 0

}
. (6.5)

The first term, q(k), is the size of the input queue at time k, and the second one is the difference between
the number of requests arriving during the sampling period, Ts , and those processed during the same
interval.

The response time ω(k) is the sum of the waiting time and the processing time of the requests

ω(k) = (1 + q(k)) × ĉ(k). (6.6)

Indeed, the total number of requests in the system is (1 + q(k)) and the departure rate is 1/ĉ(k).
We want to capture both the QoS and the energy consumption, since both affect the cost of providing

the service. A utility function, such as the one depicted in Figure 6.4, captures the rewards as well as the
penalties specified by the service-level agreement for the response time. In our queuing model the utility
is a function of the size of the queue; it can be expressed as a quadratic function of the response time

S(q(k)) = 1/2(s × (ω(k) − ω0)
2), (6.7)

with ω0, the response time set point and q(0) = q0, the initial value of the queue length. The energy
consumption is a quadratic function of the frequency

R(u(k)) = 1/2(r × u(k)2). (6.8)

The two parameters s and r are weights for the two components of the cost, the one derived from the
utility function and the second from the energy consumption. We have to pay a penalty for the requests
left in the queue at the end of the control horizon, a quadratic function of the queue length

�(q(N)) = 1/2(v × q(n)2). (6.9)

The performance measure of interest is a cost expressed as

J = �(q(N)) +
N−1∑
k=1

[S(q(k)) + R(u(k))]. (6.10)

The problem is to find the optimal control u∗ and the finite time horizon [0, N] such that the trajectory
of the system subject to optimal control is q∗, and the cost J in Eq. (6.10) is minimized subject to the

6.3 Stability of a Two-Level Resource Allocation Architecture 169

following constraints

q(k + 1) =
[

q(k) +
(

�̂(k) − u(k)

ĉ(k) × umax

)
× Ts

]
, q(k) � 0, and umin � u(k) � umax . (6.11)

When the state trajectory q(·) corresponding to the control u(·) satisfies the constraints

�1 : q(k) > 0, �2 : u(k) � umin, �3 : u(k) � umax , (6.12)

then the pair
[
q(·), u(·)] is called a feasible state. If the pair minimizes Eq. (6.10), then the pair is

optimal.
The Hamiltonian H in our example is

H = S(q(k)) + R(u(k)) + λ(k + 1) ×
[

q(k) +
(

�(k) − u(k)

c × umax

)
Ts

]

+ μ1(k) × (−q(k)) + μ2(k) × (−u(k) + umin) + μ3(k) × (u(k) − umax).

(6.13)

According to Pontryagin’s minimum principle,4 the necessary condition for a sequence of feasible
pairs to be optimal pairs is the existence of a sequence of costates λ and a Lagrange multiplier
μ = [μ1(k), μ2(k), μ3(k)] such that

H(k, q∗, u∗, λ∗, μ∗) � H(k, q, u∗, λ∗, μ∗), ∀q � 0 (6.14)

where the Lagrange multipliers, μ1(k), μ2(k), μ3(k), reflect the sensitivity of the cost function to the
queue length at time k and the boundary constraints and satisfy several conditions

μ1(k) � 0, μ1(k)(−q(k)) = 0, (6.15)

μ2(k) � 0, μ2(k)(−u(k) + umin) = 0, (6.16)

μ3(k) � 0, μ3(k)(u(k) − umax) = 0. (6.17)

A detailed analysis of the methods to solve this problem and the analysis of the stability conditions is
beyond the scope of our discussion and can be found in [369].

The extension of the techniques for optimal resource management from a single system to a cloud
with a very large number of servers is a rather challenging area of research. The problem is even harder
when, instead of transaction-based processing, the cloud applications require the implementation of a
complex workflow.

6.3 Stability of a two-level resource allocation architecture
In Section 6.2 we saw that we can assimilate a server with a closed-loop control system and we can
apply control theory principles to resource allocation. In this section we discuss a two-level resource

4Pontryagin’s principle is used in the optimal control theory to find the best possible control that leads a dynamic system
from one state to another, subject to a set of constraints.

170 CHAPTER 6 Cloud Resource Management and Scheduling

Application
controller

Cloud Controller

Cloud Platform

Application 1

Application
controller

Application nSLA 1 SLA n

Application 1

VM VM

Application n

VM VM

Monitor

Decision

Actuator

Monitor

Decision

Actuator

.

.

.

.

FIGURE 6.2

A two-level control architecture. Application controllers and cloud controllers work in concert.

allocation architecture based on control theory concepts for the entire cloud. The automatic resource
management is based on two levels of controllers, one for the service provider and one for the application,
see Figure 6.2.

The main components of a control system are the inputs, the control system components, and the
outputs. The inputs in such models are the offered workload and the policies for admission control, the
capacity allocation, the load balancing, the energy optimization, and the QoS guarantees in the cloud.
The system components are sensors used to estimate relevant measures of performance and controllers
that implement various policies; the output is the resource allocations to the individual applications .

The controllers use the feedback provided by sensors to stabilize the system; stability is related to
the change of the output. If the change is too large, the system may become unstable. In our context the
system could experience thrashing, the amount of useful time dedicated to the execution of applications
becomes increasingly small and most of the system resources are occupied by management functions.

There are three main sources of instability in any control system:

1. The delay in getting the system reaction after a control action.
2. The granularity of the control, the fact that a small change enacted by the controllers leads to very

large changes of the output.
3. Oscillations, which occur when the changes of the input are too large and the control is too weak,

such that the changes of the input propagate directly to the output.

Two types of policies are used in autonomic systems: (i) threshold-based policies and (ii) sequential
decision policies based on Markovian decision models. In the first case, upper and lower bounds on
performance trigger adaptation through resource reallocation. Such policies are simple and intuitive but
require setting per-application thresholds.

Lessons learned from the experiments with two levels of controllers and the two types of policies are
discussed in [109]. A first observation is that the actions of the control system should be carried out in

6.4 Feedback Control Based on Dynamic Thresholds 171

a rhythm that does not lead to instability. Adjustments should be carried out only after the performance
of the system has stabilized. The controller should measure the time for an application to stabilize and
adapt to the manner in which the controlled system reacts.

If upper and lower thresholds are set, instability occurs when they are too close to one another if the
variations of the workload are large enough and the time required to adapt does not allow the system
to stabilize. The actions consist of allocation/deallocation of one or more virtual machines; sometimes
allocation/deallocation of a single VM required by one of the thresholds may cause crossing of the other
threshold and this may represent, another source of instability.

6.4 Feedback control based on dynamic thresholds
The elements involved in a control system are sensors, monitors, and actuators. The sensors measure the
parameter(s) of interest, then transmit the measured values to a monitor, which determines whether the
system behavior must be changed, and, if so, it requests that the actuators carry out the necessary actions.
Often the parameter used for admission control policy is the current system load; when a threshold,
e.g., 80%, is reached, the cloud stops accepting additional load.

In practice, the implementation of such a policy is challenging or outright infeasible. First, due to
the very large number of servers and to the fact that the load changes rapidly in time, the estimation
of the current system load is likely to be inaccurate. Second, the ratio of average to maximal resource
requirements of individual users specified in a service-level agreement is typically very high. Once an
agreement is in place, user demands must be satisfied; user requests for additional resources within the
SLA limits cannot be denied.

Thresholds. A threshold is the value of a parameter related to the state of a system that triggers a
change in the system behavior. Thresholds are used in control theory to keep critical parameters of a
system in a predefined range. The threshold could be static, defined once and for all, or it could be
dynamic. A dynamic threshold could be based on an average of measurements carried out over a time
interval, a so-called integral control. The dynamic threshold could also be a function of the values of
multiple parameters at a given time or a mix of the two.

To maintain the system parameters in a given range, a high and a low threshold are often defined.
The two thresholds determine different actions; for example, a high threshold could force the system to
limit its activities and a low threshold could encourage additional activities. Control granularity refers
to the level of detail of the information used to control the system. Fine control means that very detailed
information about the parameters controlling the system state is used, whereas coarse control means
that the accuracy of these parameters is traded for the efficiency of implementation.

Proportional Thresholding. Application of these ideas to cloud computing, in particular to the IaaS
delivery model, and a strategy for resource management called proportional thresholding are discussed
in [217]. The questions addressed are:

• Is it beneficial to have two types of controllers, (1) application controllers that determine whether
additional resources are needed and (2) cloud controllers that arbitrate requests for resources and
allocate the physical resources?

• Is it feasible to consider fine control? Is course control more adequate in a cloud computing
environment?

172 CHAPTER 6 Cloud Resource Management and Scheduling

• Are dynamic thresholds based on time averages better than static ones?
• Is it better to have a high and a low threshold, or it is sufficient to define only a high threshold?

The first two questions are related to one another. It seems more appropriate to have two controllers,
one with knowledge of the application and one that’s aware of the state of the cloud. In this case a coarse
control is more adequate for many reasons. As mentioned earlier, the cloud controller can only have a
very rough approximation of the cloud state. Moreover, to simplify its resource management policies,
the service provider may want to hide some of the information it has. For example, it may not allow a
VM to access information available to VMM-level sensors and actuators.

To answer the last two questions, we have to define a measure of “goodness.” In the experiments
reported in [217], the parameter measured is the average CPU utilization, and one strategy is better than
another if it reduces the number of requests made by the application controllers to add or remove virtual
machines to the pool of those available to the application.

Devising a control theoretical approach to address these questions is challenging. The authors of
[217] adopt a pragmatic approach and provide qualitative arguments; they also report simulation results
using a synthetic workload for a transaction-oriented application, a Web server.

The essence of the proportional thresholding is captured by the following algorithm:

1. Compute the integral value of the high and the low thresholds as averages of the maximum and,
respectively, the minimum of the processor utilization over the process history.

2. Request additional VMs when the average value of the CPU utilization over the current time slice
exceeds the high threshold.

3. Release a VM when the average value of the CPU utilization over the current time slice falls below
the low threshold.

The conclusions reached based on experiments with three VMs are as follows: (a) dynamic thresholds
perform better than static ones and (b) two thresholds are better than one. Though conforming to
our intuition, such results have to be justified by experiments in a realistic environment. Moreover,
convincing results cannot be based on empirical values for some of the parameters required by integral
control equations.

6.5 Coordination of specialized autonomic performance managers
Can specialized autonomic performance managers cooperate to optimize power consumption and, at
the same time, satisfy the requirements of SLAs? This is the question examined by a group from IBM
Research in a 2007 paper [187]. The paper reports on actual experiments carried out on a set of blades
mounted on a chassis (see Figure 6.3 for the experimental setup). Extending the techniques discussed
in this report to a large-scale farm of servers poses significant problems; computational complexity is
just one of them.

Virtually all modern processors support dynamic voltage scaling (DVS) as a mechanism for energy
saving. Indeed, the energy dissipation scales quadratically with the supply voltage. The power manage-
ment controls the CPU frequency and, thus, the rate of instruction execution. For some compute-intensive
workloads the performance decreases linearly with the CPU clock frequency, whereas for others the
effect of lower clock frequency is less noticeable or nonexistent. The clock frequency of individual

6.5 Coordination of Specialized Autonomic Performance Managers 173

Performance manager Power manager

Workload
generator

Blade

Blade

Blade

Blade

Blade

Workload
distribution

Power
assignment Power

Control policyControl policy

Communication between
autonomous managers

Power
data

Performance
data

FIGURE 6.3

Autonomous performance and power managers cooperate to ensure SLA prescribed performance and energy
optimization. They are fed with performance and power data and implement the performance and power
management policies, respectively.

blades/servers is controlled by a power manager, typically implemented in the firmware; it adjusts the
clock frequency several times a second.

The approach to coordinating power and performance management in [187] is based on several ideas:

• Use a joint utility function for power and performance. The joint performance-power utility function,
Upp(R, P), is a function of the response time, R, and the power, P , and it can be of the form

Upp(R, P) = U (R) − ε × P or Upp(R, P) = U (R)

P
, (6.18)

with U (R) the utility function based on response time only and ε a parameter to weight the influence
of the two factors, response time and power.

• Identify a minimal set of parameters to be exchanged between the two managers.
• Set up a power cap for individual systems based on the utility-optimized power management policy.
• Use a standard performance manager modified only to accept input from the power manager regard-

ing the frequency determined according to the power management policy. The power manager
consists of Tcl (Tool Command Language) and C programs to compute the per-server (per-blade)
power caps and send them via IPMI5 to the firmware controlling the blade power. The power manager
and the performance manager interact, but no negotiation between the two agents is involved.

5Intelligent Platform Management Interface (IPMI) is a standardized computer system interface developed by Intel and used
by system administrators to manage a computer system and monitor its operation.

174 CHAPTER 6 Cloud Resource Management and Scheduling

• Use standard software systems. For example, use the WebSphere Extended Deployment (WXD),
middleware that supports setting performance targets for individual Web applications and for the
monitor response time, and periodically recompute the resource allocation parameters to meet the
targets set. Use the Wide-Spectrum Stress Tool from the IBM Web Services Toolkit as a workload
generator.

For practical reasons the utility function was expressed in terms of nc, the number of clients, and pκ ,
the powercap, as in

U ′(pκ , nc) = Upp(R(pκ , nc), P(pκ , nc)). (6.19)

The optimal powercap popt
κ is a function of the workload intensity expressed by the number of

clients, nc,
popt
κ (nc) = arg max U ′(pκ , nc). (6.20)

The hardware devices used for these experiments were the Goldensbridge blades each with an Intel
Xeon processor running at 3 GHz with 1 GB of level 2 cache and 2 GB of DRAM and with hyperthreading
enabled. A blade could serve 30 to 40 clients with a response time at or better than a 1,000 msec limit.
When pk is lower than 80 Watts, the processor runs at its lowest frequency, 375 MHz, whereas for pk

at or larger than 110 Watts, the processor runs at its highest frequency, 3 GHz.
Three types of experiments were conducted: (i) with the power management turned off; (ii) when

the dependence of the power consumption and the response time were determined through a set of
exhaustive experiments; and (iii) when the dependency of the powercap pκ on nc was derived via
reinforcement-learning models.

The second type of experiment led to the conclusion that both the response time and the power
consumed are nonlinear functions of the powercap, pκ , and the number of clients, nc; more specifically,
the conclusions of these experiments are:

• At a low load the response time is well below the target of 1,000 msec.
• At medium and high loads the response time decreases rapidly when pk increases from 80 to

110 watts.
• For a given value of the powercap, the consumed power increases rapidly as the load increases.

The machine learning algorithm used for the third type of experiment was based on the Hybrid
Reinforcement Learning algorithm described in [349]. In the experiments using the machine learning
model, the powercap required to achieve a response time lower than 1,000 msec for a given number of
clients was the lowest when ε = 0.05 and the first utility function given by Eq. (6.18) was used. For
example, when nc = 50, then pκ = 109 Watts when ε = 0.05, whereas pκ = 120 when ε = 0.01.

6.6 A utility-based model for cloud-based Web services
A utility function relates the “benefits” of an activity or service with the “cost” to provide the service.
For example, the benefit could be revenue and the cost could be the power consumption.

A service-level agreement (SLA) often specifies the rewards as well as the penalties associated with
specific performance metrics. Sometimes the quality of services translates into average response time;
this is the case of cloud-based Web services when the SLA often explicitly specifies this requirement.

6.6 A Utility-Based Model for Cloud-Based Web Services 175

Utility function U(R)

R - response time R0 R1 R2R
e
w
a
r
d

0

P
e
n
a
l
t
y

FIGURE 6.4

The utility function U(R) is a series of step functions with jumps corresponding to the response time,
R = R0|R1|R2, when the reward and the penalty levels change according to the SLA. The dotted line shows
a quadratic approximation of the utility function.

For example, Figure 6.4 shows the case when the performance metrics is R, the response time. The
largest reward can be obtained when R � R0; a slightly lower reward corresponds to R0 < R � R1.
When R1 < R � R2, instead of gaining a reward, the provider of service pays a small penalty; the
penalty increases when R > R2. A utility function, U (R), which captures this behavior, is a sequence
of step functions. The utility function is sometimes approximated by a quadratic curve, as we shall see
in Section 6.2.

In this section we discuss a utility-based approach for autonomic management. The goal is to max-
imize the total profit computed as the difference between the revenue guaranteed by an SLA and the
total cost to provide the services. Formulated as an optimization problem, the solution discussed in [9]
addresses multiple policies, including QoS. The cloud model for this optimization is quite complex and
requires a fair number of parameters.

We assume a cloud providing |K | different classes of service, each class k involving Nk applications.
For each class k ∈ K call vk the revenue (or the penalty) associated with a response time rk and assume
a linear dependency for this utility function of the form vk = vmax

k

(
1 − rk/rmax

k

)
, see Figure 6.5(a).

Call mk = −vmax
k /rmax

k the slope of the utility function.
The system is modeled as a network of queues with multiqueues for each server and with a delay

center that models the think time of the user after the completion of service at one server and the
start of processing at the next server [see Figure 6.5(b)]. Upon completion, a class k request either
completes with probability (1−∑k′∈K πk,k′) or returns to the system as a class k′ request with transition
probability πk,k′ . Call λk the external arrival rate of class k requests and �k the aggregate rate for class
k, where �k = λk +∑

k′∈K �k′πk,k′ .

176 CHAPTER 6 Cloud Resource Management and Scheduling

i1

i4
i6

i3

i5

i2

k

k

k
max

k
max

S

S

S

S

S

S

r
r

V

V

(a) (b)
FIGURE 6.5

(a) The utility function, vk the revenue (or the penalty) associated with a response time rk for a request of
class k ∈ K . The slope of the utility function is mk = −vmax

k /rmax
k . (b) A network of multiqueues. At each

server Si there are |K | queues for each one of the k ∈ K classes of requests. A tier consists of all requests
of class k ∈ K at all servers Sij ∈ I, 1 � j � 6.

Typically, CPU and memory are considered representative for resource allocation; for simplicity we
assume a single CPU that runs at a discrete set of clock frequencies and a discrete set of supply voltages
according to a Dynamic Voltage and Frequency Scaling (DVFS) model. The power consumption of
a server is a function of the clock frequency. The scheduling of a server is work-conserving6 and is
modeled as a Generalized Processor Sharing (GPS) scheduling [385]. Analytical models [4,280] are
too complex for large systems.

The optimization problem formulated in [9] involves five terms: A and B reflect revenues; C the cost
of servers in a low-power, stand-by mode; D the cost of active servers, given their operating frequency;
E , the cost of switching servers from low-power, stand-by mode to active state, and F , the cost of
migrating VMs from one server to another. There are nine constraints �1, �2, . . . , �9 for this mixed-
integer, nonlinear programming problem. The decision variables for this optimization problem are listed
in Table 6.2 and the parameters used are shown in Table 6.3.

6A scheduling policy is work-conserving if the server cannot be idle while there is work to be done.

6.6 A Utility-Based Model for Cloud-Based Web Services 177

Table 6.2 Decision variables for the optimization problem.

Name Description

xi xi = 1 if server i ∈ I is running, xi = 0 otherwise
yi ,h yi ,h = 1 if server i is running at frequency h, yi ,h = 0 otherwise
zi ,k ,j zi ,k ,j = 1 if application tier j of a class k request runs on server i , zi ,k ,j = 0 otherwise
wi ,k wi ,k = 1 if at least one class k request is assigned to server i , wi ,k = 0 otherwise
λi ,k ,j Rate of execution of applications tier j of class k requests on server i
φi ,k ,j Fraction of capacity of server i assigned to tier j of class k requests

Table 6.3 The parameters used for the A, B, C, D, E , and F terms and the constraints �i of the
optimization problem.

Name Description

I The set of servers
K The set of classes
�k The aggregate rate for class k ∈ K ,�k = λk +∑

k ′∈K �k ′πk ,k ′
ai The availability of server i ∈ I
Ak Minimum level of availability for request class k ∈ K specified by the SLA
mk The slope of the utility function for a class k ∈ K application
Nk Number of applications in class k ∈ K
Hi The range of frequencies of server i ∈ I
Ci ,h Capacity of server i ∈ I running at frequency h ∈ Hi
ci ,h Cost for server i ∈ I running at frequency h ∈ Hi
c̄i Average cost of running server i
μk ,j Maximum service rate for a unit capacity server for tier j of a class k request
cm The cost of moving a virtual machine from one server to another
csi The cost for switching server i from the stand-by mode to an active state
RAMk ,j The amount of main memory for tier j of class k request

RAMi The amount of memory available on server i

The expression to be maximized is:

(A + B) − (C + D + E + F) (6.21)

with

A = max
∑
k∈K

⎛
⎝−mk

∑
i∈I , j∈Nk

λi,k, j∑
h∈Hi

(
Ci,h × yi,h

)
μk, j × φi,k, j − λi,k, j

⎞
⎠ ,

178 CHAPTER 6 Cloud Resource Management and Scheduling

B =
∑
k∈K

uk × �k, (6.22)

C =
∑
i∈I

c̄i , D =
∑

i∈I ,h∈Hi

ci,h × yi,h, E =
∑
i∈I

csi max (0, xi − x̄i), (6.23)

and
F =

∑
i∈I ,k∈K , j∈N j

cm max (0, zi, j,k − z̄i, j,k). (6.24)

The nine constraints are:

(�1)
∑

i∈I λi,k, j = �k, ∀k ∈ K , j ∈ Nk ⇒ the traffic assigned to all servers for class k requests
equals the predicted load for the class.

(�2)
∑

k∈K , j∈Nk
φi,k, j � 1 ∀i ∈ I ⇒ server i cannot be allocated an workload more than its capacity.

(�3)
∑

h∈Hi
yi,h = xi , ∀i ∈ I ⇒ if server i ∈ I is active it runs at one frequency in the set Hi , and

only one yi,h is nonzero.
(�4) zi,k, j � xi , ∀i ∈ I , k ∈ K , j ∈ Nk ⇒ requests can only be assigned to active servers.
(�5) λi,k, j � �k × zi,k, j , ∀i ∈ I , k ∈ K , j ∈ Nk ⇒ requests may run on server i ∈ I only if the

corresponding application tier has been assigned to server i .

(�6) λi,k, j �
(∑

h∈Hi
Ci,h × yi,h

)
μk, j × φi,k, j , ∀i ∈ I , k ∈ K , j ∈ Nk ⇒ resources cannot be

saturated.
(�7) R AMk, j × zi,k, j � R AMi , ∀i ∈ I , k ∈ K ⇒ the memory on server i is sufficient to support

all applications running on it.

(�8)

Nk
j=1

(
1 −
M

i=1(1 − a
wi,k
i

)
� Ak, ∀k ∈ K ⇒ the availability of all servers assigned to class k

request should be at least equal to the minimum required by the SLA.

(�9)
∑Nk

j=1 zi,k, j � Nk × wi,k, ∀i ∈ I , k ∈ K
λi, j,k, φi, j,k � 0, ∀i ∈ I , k ∈ K , j ∈ Nk

xi , yi,h, zi,k, j , wi,k ∈ {0, 1}, ∀i ∈ I , k ∈ K , j ∈ Nk ⇒ constraints and relations among
decision variables.

Clearly, this approach is not scalable to clouds with a very large number of servers. Moreover, the
large number of decision variables and parameters of the model make this approach infeasible for a
realistic cloud computing resource management strategy.

6.7 Resource bundling: Combinatorial auctions for cloud resources
Resources in a cloud are allocated in bundles, allowing users get maximum benefit from a specific
combination of resources. Indeed, along with CPU cycles, an application needs specific amounts of main
memory, disk space, network bandwidth, and so on. Resource bundling complicates traditional resource
allocation models and has generated interest in economic models and, in particular, auction algorithms.
In the context of cloud computing, an auction is the allocation of resources to the highest bidder.

Combinatorial Auctions. Auctions in which participants can bid on combinations of items, or pack-
ages, are called combinatorial auctions [93]. Such auctions provide a relatively simple, scalable, and
tractable solution to cloud resource allocation. Two recent combinatorial auction algorithms are the

6.7 Resource Bundling: Combinatorial Auctions for Cloud Resources 179

simultaneous clock auction [29] and the clock proxy auction [30]. The algorithm discussed in this chap-
ter and introduced in [333] is called the ascending clock auction (ASCA). In all these algorithms the
current price for each resource is represented by a “clock” seen by all participants at the auction.

We consider a strategy in which prices and allocation are set as a result of an auction. In this auction,
users provide bids for desirable bundles and the price they are willing to pay. We assume a population
of U users, u = {1, 2, . . . , U }, and R resources, r = {1, 2, . . . , R}. The bid of user u is Bu = {Qu, πu}
with Qi = (q1

u , q2
u , q3

u , . . .) an R-component vector; each element of this vector, qi
u , represents a bundle

of resources user u would accept and, in return, pay the total price πu . Each vector component qi
u is a

positive quantity and encodes the quantity of a resource desired or, if negative, the quantity of the re-
source offered. A user expresses her desires as an indifference set I = (q1

u XOR q2
u XOR q3

u XOR . . .).
The final auction prices for individual resources are given by the vector p = (p1, p2, . . . , pR) and

the amounts of resources allocated to user u are xu = (x1
u , x2

u , . . . , x R
u). Thus, the expression [(xu)T p]

represents the total price paid by user u for the bundle of resources if the bid is successful at time T .
The scalar [minq∈Qu (qT p)] is the final price established through the bidding process.

The bidding process aims to optimize an objective function f (x, p). This function could be tailored
to measure the net value of all resources traded, or it can measure the total surplus – the difference
between the maximum amount users are willing to pay minus the amount they pay. Other optimization
functions could be considered for a specific system, e.g., the minimization of energy consumption or
of security risks.

Pricing and Allocation Algorithms. A pricing and allocation algorithm partitions the set of users
into two disjoint sets, winners and losers, denoted as W and L, respectively. The algorithm should:

1. Be computationally tractable. Traditional combinatorial auction algorithms such as Vickey-Clarke-
Groves (VLG) fail this criteria, because they are not computationally tractable.

2. Scale well. Given the scale of the system and the number of requests for service, scalability is a
necessary condition.

3. Be objective. Partitioning in winners and losers should only be based on the price πu of a user’s bid.
If the price exceeds the threshold, the user is a winner; otherwise the user is a loser.

4. Be fair. Make sure that the prices are uniform. All winners within a given resource pool pay the same
price.

5. Indicate clearly at the end of the auction the unit prices for each resource pool.
6. Indicate clearly to all participants the relationship between the supply and the demand in the system.

The function to be maximized is

max
x,p

f (x, p). (6.25)

The constraints in Table 6.4 correspond to our intuition: (a) the first one states that a user either
gets one of the bundles it has opted for or nothing; no partial allocation is acceptable. (b) The second
constraint expresses the fact that the system awards only available resources; only offered resources
can be allocated. (c) The third constraint is that the bid of the winners exceeds the final price. (d) The
fourth constraint states that the winners get the least expensive bundles in their indifference set. (e) The
fifth constraint states that losers bid below the final price. (f) The last constraint states that all prices are
positive numbers.

180 CHAPTER 6 Cloud Resource Management and Scheduling

Table 6.4 The constraints for a combinatorial auction algorithm.

xu ∈ {0 ∪ Qu }, ∀u A user gets all resources or nothing.∑
u xu � 0 Final allocation leads to a net surplus of resources.

πu � (xu)T p, ∀u ∈ W Auction winners are willing to pay the final price.

(xu)T p = minq∈Qu (qT p), ∀u ∈ W Winners get the cheapest bundle in I.

πu < minq∈Qu (qT p), ∀u ∈ L The bids of the losers are below the final price.
p � 0 Prices must be nonnegative.

The ASCA Combinatorial Auction Algorithm. Informally, in the ASCA algorithm [333] the par-
ticipants at the auction specify the resource and the quantities of that resource offered or desired at the
price listed for that time slot. Then the excess vector

z(t) =
∑

u

xu(t) (6.26)

is computed. If all its components are negative, the auction stops; negative components mean that the
demand does not exceed the offer. If the demand is larger than the offer, z(t) � 0, the auctioneer
increases the price for items with a positive excess demand and solicits bids at the new price. Note that
the algorithm satisfies conditions 1 through 6; from Table 6.3 all users discover the price at the same time
and pay or receive a “fair” payment relative to uniform resource prices, the computation is tractable, and
the execution time is linear in the number of participants at the auction and the number of resources. The
computation is robust and generates plausible results regardless of the initial parameters of the system.

There is a slight complication as the algorithm involves user bidding in multiple rounds. To address
this problem the user proxies automatically adjust their demands on behalf of the actual bidders, as
shown in Figure 6.6. These proxies can be modeled as functions that compute the “best bundle” from
each Qu set given the current price

Qu =
{

q̂u if q̂T
u p � πu with q̂u ∈ arg min (qT

u p)

0 otherwise
.

The input to the ASCA algorithm: U users, R resources, p̄ the starting price, and the update increment
function, g : (x, p) 	→ R

R. The pseudocode of the algorithm is:

1: set t = 0, p(0) = p̄
2: loop
3: collect bids xu(t) = Gu(p(t)), ∀u
4: calculate excess demand z(t) = ∑

u xu(t)
5: if z(t) <0 then
6: break
7: else

6.7 Resource Bundling: Combinatorial Auctions for Cloud Resources 181

Auctioneer

u1 Proxy

u2

u3

uU

Proxy

Proxy

Proxy

x1(t)

xU(t)

x3(t)

x2(t)

0)(>∑ tx
u

u

p(t+1)

FIGURE 6.6

The schematics of the ASCA algorithm. To allow for a single round, auction users are represented by proxies
that place the bids xu(t). The auctioneer determines whether there is an excess demand and, in that case,
raises the price of resources for which the demand exceeds the supply and requests new bids.

8: update prices p(t + 1) = p(t) + g(x(t), p(t))
9: t ← t + 1
10: end if
11: end loop

In this algorithm g(x(t), p(t)) is the function for setting the price increase. This function can be
correlated with the excess demand z(t), as in g(x(t), p(t)) = αz(t)+ (the notation x+ means max (x, 0))
with α a positive number. An alternative is to ensure that the price does not increase by an amount larger
than δ. In that case g(x(t), p(t)) = min (αz(t)+, δe) with e = (1, 1, . . . , 1) is an R-dimensional vector
and minimization is done componentwise.

The convergence of the optimization problem is guaranteed only if all participants at the auction are
either providers of resources or consumers of resources, but not both providers and consumers at the same
time. Nevertheless, the clock algorithm only finds a feasible solution; it does not guarantee its optimality.

The authors of [333] have implemented the algorithm and allowed internal use of it within Google.
Their preliminary experiments show that the system led to substantial improvements. One of the most
interesting side effects of the new resource allocation policy is that users were encouraged to make their
applications more flexible and mobile to take advantage of the flexibility of the system controlled by
the ASCA algorithm.

182 CHAPTER 6 Cloud Resource Management and Scheduling

An auctioning algorithm is very appealing because it supports resource bundling and does not require
a model of the system. At the same time, a practical implementation of such algorithms is challenging.
First, requests for service arrive at random times, whereas in an auction all participants must react
to a bid at the same time. Periodic auctions must then be organized, but this adds to the delay of
the response. Second, there is an incompatibility between cloud elasticity, which guarantees that the
demand for resources of an existing application will be satisfied immediately, and the idea of periodic
auctions.

6.8 Scheduling algorithms for computing clouds
Scheduling is a critical component of cloud resource management. Scheduling is responsible for resource
sharing/multiplexing at several levels. A server can be shared among several virtual machines, each vir-
tual machine could support several applications, and each application may consist of multiple threads.
CPU scheduling supports the virtualization of a processor, the individual threads acting as virtual proces-
sors; a communication link can be multiplexed among a number of virtual channels, one for each flow.

In addition to the requirement to meet its design objectives, a scheduling algorithm should be efficient,
fair, and starvation-free. The objectives of a scheduler for a batch system are to maximize the throughput
(the number of jobs completed in one unit of time, e.g., in one hour) and to minimize the turnaround
time (the time between job submission and its completion). For a real-time system the objectives are to
meet the deadlines and to be predictable. Schedulers for systems supporting a mix of tasks – some with
hard real-time constraints, others with soft, or no timing constraints – are often subject to contradictory
requirements. Some schedulers are preemptive, allowing a high-priority task to interrupt the execution
of a lower-priority one; others are nonpreemptive.

Two distinct dimensions of resource management must be addressed by a scheduling policy: (a) the
amount or quantity of resources allocated and (b) the timing when access to resources is granted.
Figure 6.7 identifies several broad classes of resource allocation requirements in the space defined by
these two dimensions: best-effort, soft requirements, and hard requirements. Hard-real time systems are
the most challenging because they require strict timing and precise amounts of resources.

There are multiple definitions of a fair scheduling algorithm. First, we discuss the max-min fairness
criterion [128]. Consider a resource with bandwidth B shared among n users who have equal rights.
Each user requests an amount bi and receives Bi . Then, according to the max-min criterion, the following
conditions must be satisfied by a fair allocation:

C1. The amount received by any user is not larger than the amount requested, Bi � bi .
C2. If the minimum allocation of any user is Bmin no allocation satisfying condition C1 has a higher

Bmin than the current allocation.
C3. When we remove the user receiving the minimum allocation Bmin and then reduce the total amount

of the resource available from B to (B − Bmin), the condition C2 remains recursively true.

A fairness criterion for CPU scheduling [142] requires that the amount of work in the time interval
from t1 to t2 of two runnable threads a and b, �a(t1, t2) and �b(t1, t2), respectively, minimize the
expression ∣∣∣∣�a(t1, t2)

wa
− �b(t1, t2)

wb

∣∣∣∣ , (6.27)

6.8 Scheduling Algorithms for Computing Clouds 183

strict

Quality

strict

loose

loose

Best-effort

Soft-requirements

Hard-requirements

Hard real-time

Timing

FIGURE 6.7

Best-effort policies do not impose requirements regarding either the amount of resources allocated to an
application or the timing when an application is scheduled. Soft-requirements allocation policies require
statistically guaranteed amounts and timing constraints; hard-requirements allocation policies demand strict
timing and precise amounts of resources.

where wa and wb are the weights of the threads a and b, respectively.
The quality-of-service (QoS) requirements differ for different classes of cloud applications and

demand different scheduling policies. Best-effort applications such as batch applications and analytics7

do not require QoS guarantees. Multimedia applications such as audio and video streaming have soft
real-time constraints and require statistically guaranteed maximum delay and throughput. Applications
with hard real-time constraints do not use a public cloud at this time but may do so in the future.

Round-robin, FCFS, shortest-job-first (SJF), and priority algorithms are among the most common
scheduling algorithms for best-effort applications. Each thread is given control of the CPU for a definite
period of time, called a time-slice, in a circular fashion in the case of round-robin scheduling. The
algorithm is fair and starvation-free. The threads are allowed to use the CPU in the order in which they
arrive in the case of the FCFS algorithms and in the order of their running time in the case of SJF
algorithms. Earliest deadline first (EDF) and rate monotonic algorithms (RMA) are used for real-time
applications. Integration of scheduling for the three classes of application is discussed in [56], and two

7The term analytics is overloaded; sometimes it means discovery of patterns in the data, but it could also mean statistical
processing of the results of a commercial activity.

184 CHAPTER 6 Cloud Resource Management and Scheduling

new algorithms for integrated scheduling, resource allocation/dispatching (RAD) and rate-based earliest
deadline (RBED) are proposed.

Next we discuss several algorithms of special interest for computer clouds. These algorithms illustrate
the evolution in thinking regarding the fairness of scheduling and the need to accommodate multi-
objective scheduling – in particular, scheduling for multimedia applications.

6.9 Fair queuing
Computing and communication on a cloud are intimately related. Therefore, it should be no surprise
that the first algorithm we discuss can be used for scheduling packet transmission as well as threads.
Interconnection networks allow cloud servers to communicate with one another and with users. These
networks consist of communication links of limited bandwidth and switches/routers/gateways of limited
capacity. When the load exceeds its capacity, a switch starts dropping packets because it has limited
input buffers for the switching fabric and for the outgoing links, as well as limited CPU cycles.

A switch must handle multiple flows and pairs of source-destination endpoints of the traffic. Thus, a
scheduling algorithm has to manage several quantities at the same time: the bandwidth, the amount of
data each flow is allowed to transport; the timing when the packets of individual flows are transmitted;
and the buffer space allocated to each flow. A first strategy to avoid network congestion is to use a FCFS
scheduling algorithm. The advantage of the FCFS algorithm is a simple management of the three quanti-
ties: bandwidth, timing, and buffer space. Nevertheless, the FCFS algorithm does not guarantee fairness;
greedy flow sources can transmit at a higher rate and benefit from a larger share of the bandwidth.

To address this problem, a fair queuing algorithm proposed in [252] requires that separate queues, one
per flow, be maintained by a switch and that the queues be serviced in a round-robin manner. This algo-
rithm guarantees the fairness of buffer space management, but does not guarantee fairness of bandwidth
allocation. Indeed, a flow transporting large packets will benefit from a larger bandwidth (see Figure 6.8).

The fair queuing (FQ) algorithm in [102] proposes a solution to this problem. First, it introduces
a bit-by-bit round-robin (BR) strategy; as the name implies, in this rather impractical scheme a single
bit from each queue is transmitted and the queues are visited in a round-robin fashion. Let R(t) be the
number of rounds of the BR algorithm up to time t and Nactive(t) be the number of active flows through
the switch. Call ta

i the time when the packet i of flow a, of size Pa
i bits arrives, and call Sa

i and Fa
i the

values of R(t) when the first and the last bit, respectively, of the packet i of flow a are transmitted. Then,

Fa
i = Sa

i + Pa
i and Sa

i = max
[
Fa

i−1, R
(
ta
i

)]
. (6.28)

The quantities R(t), Nactive(t), Sa
i , and Fa

i depend only on the arrival time of the packets, ta
i , and not

on their transmission time, provided that a flow a is active as long as

R(t) � Fa
i when i = max

(
j |ta

i � t
)
. (6.29)

The authors of [102] use for packet-by-packet transmission time the following nonpreemptive schedul-
ing rule, which emulates the BR strategy: The next packet to be transmitted is the one with the smallest
Fa

i . A preemptive version of the algorithm requires that the transmission of the current packet be
interrupted as soon as one with a shorter finishing time, Fa

i , arrives.

6.10 Start-Time Fair Queuing 185

ta
i-1 ta

i

Fa
i-1(t

a
i-1)

Sa
i(t

a
i)=Ra

i(t
a
i)

Fa
i(t

a
i)

a
i(t

a
i)+Pa

i

ta
i-1 ta

i

Sa
i(t

a
i)=Fa

i-1(t
a
i-1)

Fa
i(t

a
i)=S a

i(t
a
i)+Pa

i

Ra
i(t

a
i)

R(t) R(t)

=S

(a) (b)
FIGURE 6.8

Transmission of a packet i of flow a arriving at time t a
i of size Pa

i bits. The transmission starts at time
Sa

i = max[F a
i−1, R(t a

i)] and ends at time F a
i = Sa

i + Pa
i with R(t) the number of rounds of the algorithm.

(a) The case F a
i−1 < R(t a

i). (b) The case F a
i−1 � R(t a

i).

A fair allocation of the bandwidth does not have an effect on the timing of the transmission. A possible
strategy is to allow less delay for the flows using less than their fair share of the bandwidth. The same
paper [102] proposes the introduction of a quantity called the bid, Ba

i , and scheduling the packet
transmission based on its value. The bid is defined as

Ba
i = Pa

i + max
[
Fa

i−1,
(
R
(
ta
i

)− δ
)]

, (6.30)

with δ a nonnegative parameter. The properties of the FQ algorithm, as well as the implementation of
a nonpreemptive version of the algorithms, are analyzed in [102].

6.10 Start-time fair queuing
A hierarchical CPU scheduler for multimedia operating systems was proposed in [142]. The basic idea
of the start-time fair queuing (SFQ) algorithm is to organize the consumers of the CPU bandwidth in a
tree structure; the root node is the processor and the leaves of this tree are the threads of each application.
A scheduler acts at each level of the hierarchy. The fraction of the processor bandwidth, B, allocated to
the intermediate node i is

Bi

B
= wi∑n

j=1 w j
(6.31)

with w j , 1 � j � n, the weight of the n children of node i ; see the example in Figure 6.9.
When a virtual machine is not active, its bandwidth is reallocated to the other VMs active at the time.

When one of the applications of a virtual machine is not active, its allocation is transferred to the other

186 CHAPTER 6 Cloud Resource Management and Scheduling

VM

A

Server

(3)

(3) (1)(1)

(1)

(1) (1) (1) (1) (1) (1)(1)

VM

VS

21

1 A2

t 21 1,

A3

t 1 1,t 1 VS2 VS331,t

FIGURE 6.9

The SFQ tree for scheduling when two virtual machines, VM1 and VM2, run on a powerful server. VM1 runs
two best-effort applications A1, with three threads t1,1, t1,2, and t1,3, and A2 with a single thread, t2. VM2

runs a video-streaming application, A3, with three threads vs1, vs2, and vs3. The weights of virtual machines,
applications, and individual threads are shown in parenthesis.

applications running on the same VM. Similarly, if one of the threads of an application is not runnable,
its allocation is transferred to the other threads of the applications.

Call va(t) and vb(t) the virtual time of threads a and b, respectively, at real time t . The virtual time
of the scheduler at time t is denoted by v(t). Call q the time quantum of the scheduler in milliseconds.
The threads a and b have their time quanta, qa and qb, weighted by wa and wb, respectively; thus, in
our example, the time quanta of the two threads are q/wa and q/wb, respectively. The i-th activation
of thread a will start at the virtual time Si

a and will finish at virtual time Fi
a . We call τ j the real time of

the j-th invocation of the scheduler.
An SFQ scheduler follows several rules:

R1. The threads are serviced in the order of their virtual start-up time; ties are broken arbitrarily.
R2. The virtual startup time of the i-th activation of thread x is

Si
x (t) = max

[
v
(
τ j
)

, F (i−1)
x (t)

]
and S0

x = 0. (6.32)

The condition for thread i to be started is that thread (i − 1) has finished and that the scheduler is
active.

6.10 Start-Time Fair Queuing 187

R3. The virtual finish time of the i-th activation of thread x is

Fi
x (t) = Si

x (t) + q

wx
. (6.33)

A thread is stopped when its time quantum has expired; its time quantum is the time quantum of
the scheduler divided by the weight of the thread.

R4. The virtual time of all threads is initially zero, v0
x = 0. The virtual time v(t) at real time t is

computed as follows:

v(t) =
{

Virtual start time of the thread in service at time t, if CPU is busy
Maximum finish virtual time of any thread, if CPU is idle.

(6.34)

In this description of the algorithm we have included the real time t to stress the dependence of all
events in virtual time on the real time. To simplify the notation we use in our examples the real time as
the index of the event. In other words, S6

a means the virtual start-up time of thread a at real time t = 6.

Example. The following example illustrates the application of the SFQ algorithm when there are two
threads with the weights wa = 1 and wb = 4 and the time quantum is q = 12 (see Figure 6.10.)

Initially S0
a = 0, S0

b = 0, va(0) = 0, and vb(0) = 0. Thread b blocks at time t = 24 and wakes up
at time t = 60.

The scheduling decisions are made as follows:

1. t = 0: We have a tie, S0
a = S0

b , and arbitrarily thread b is chosen to run first. The virtual finish time
of thread b is

F0
b = S0

b + q/wb = 0 + 12/4 = 3. (6.35)

2. t = 3: Both threads are runnable and thread b was in service; thus, v(3) = S0
b = 0; then

S1
b = max[v(3), F0

b] = max (0, 3) = 3. (6.36)

But S0
a < S1

b , thus thread a is selected to run. Its virtual finish time is

F0
a = S0

a + q/wa = 0 + 12/1 = 12. (6.37)

3. t = 15: Both threads are runnable, and thread a was in service at this time; thus,

v(15) = S0
a = 0 (6.38)

and
S1

a = max[v(15), F0
a] = max[0, 12] = 12. (6.39)

As S1
b = 3 < 12, thread b is selected to run; the virtual finish time of thread b is now

F1
b = S1

b + q/wb = 3 + 12/4 = 6. (6.40)

188 CHAPTER 6 Cloud Resource Management and Scheduling

4. t = 18: Both threads are runnable, and thread b was in service at this time; thus,

v(18) = S1
b = 3 (6.41)

and
S2

b = max[v(18), F1
b] = max[3, 6] = 6. (6.42)

As S2
b < S1

a = 12, thread b is selected to run again; its virtual finish time is

F2
b = S2

b + q/wb = 6 + 12/4 = 9. (6.43)

5. t = 21: Both threads are runnable, and thread b was in service at this time; thus,

v(21) = S2
b = 6 (6.44)

and
S3

b = max[v(21), F2
b] = max[6, 9] = 9. (6.45)

24 36

3

0

0

0

12

3

6

9

9

6

12

12

15

12

24

24

36

36

48
t

Thread a

Thread b

Virtual time

6
12

24

36

Real time

thread b is suspended thread b is reactivated

3 15 48 602118

FIGURE 6.10

Top, the virtual start-up time Sa(t) and Sb(t) and the virtual finish time Fa(t) and Fb(t) function of the real time
t for each activation of threads a and b, respectively, are marked at the top and bottom of the box representing
a running thread. The virtual time of the scheduler v (t) function of the real time is shown on the bottom graph.

6.10 Start-Time Fair Queuing 189

As S2
b < S1

a = 12, thread b is selected to run again; its virtual finish time is

F3
b = S3

b + q/wb = 9 + 12/4 = 12. (6.46)

6. t = 24: Thread b was in service at this time; thus,

v(24) = S3
b = 9 (6.47)

S4
b = max[v(24), F3

b] = max[9, 12] = 12. (6.48)

Thread b is suspended till t = 60; thus, thread a is activated. Its virtual finish time is

F1
a = S1

a + q/wa = 12 + 12/1 = 24. (6.49)

7. t = 36: Thread a was in service and the only runnable thread at this time; thus,

v(36) = S1
a = 12 (6.50)

and
S2

a = max[v(36), F2
a] = max[12, 24] = 24. (6.51)

Then,
F2

a = S2
a + q/wa = 24 + 12/1 = 36. (6.52)

8. t = 48: Thread a was in service and is the only runnable thread at this time; thus,

v(48) = S2
a = 24 (6.53)

and
S3

a = max[v(48), F2
a] = max[24, 36] = 36. (6.54)

Then,
F3

a = S3
a + q/wa = 36 + 12/1 = 48. (6.55)

9. t = 60: Thread a was in service at this time; thus,

v(60) = S3
a = 36 (6.56)

and
S4

a = max[v(60), F3
a] = max[36, 48] = 48. (6.57)

But now thread b is runnable and S4
b = 12.

Thus, thread b is activated and

F4
b = S4

b + q/wb = 12 + 12/4 = 15. (6.58)

Several properties of the SFQ algorithm are proved in [142]. The algorithm allocates CPU fairly
when the available bandwidth varies in time and provides throughput as well as delay guarantees. The
algorithm schedules the threads in the order of their virtual start-up time, the shortest one first; the length
of the time quantum is not required when a thread is scheduled but only after the thread has finished its
current allocation. The authors of [142] report that the overhead of the SFQ algorithms is comparable
to that of the Solaris scheduling algorithm.

190 CHAPTER 6 Cloud Resource Management and Scheduling

6.11 Borrowed virtual time
The objective of the borrowed virtual time (BVT) algorithm is to support low-latency dispatching of
real-time applications as well as a weighted sharing of the CPU among several classes of applications
[107]. Like SFQ, the BVT algorithm supports scheduling of a mix of applications, some with hard,
some with soft real-time constraints, and applications demanding only a best effort.

Thread i has an effective virtual time, Ei , an actual virtual time, Ai , and a virtual time warp, Wi .
The scheduler thread maintains its own scheduler virtual time (SVT), defined as the minimum actual
virtual time A j of any thread. The threads are dispatched in the order of their effective virtual time, Ei,
a policy called the earliest virtual time (EVT).

The virtual time warp allows a thread to acquire an earlier effective virtual time – in other words, to
borrow virtual time from its future CPU allocation. The virtual warp time is enabled when the variable
warpBack is set. In this case a latency-sensitive thread gains dispatching preference as

Ei ←
{

Ai if warpBack = OFF
Ai − Wi if warpBack = ON.

(6.59)

The algorithm measures the time in minimum charging units (mcu) and uses a time quantum called
context switch allowance (C), which measures the real time a thread is allowed to run when com-
peting with other threads, measured in multiples of mcu. Typical values for the two quantities are
mcu = 100 μsec and C = 100 msec. A thread is charged an integer number of mcu.

Context switches are triggered by traditional events, the running thread is blocked waiting for an
event to occur, the time quantum expires, and an interrupt occurs. Context switching also occurs when a
thread becomes runnable after sleeping. When the thread τi becomes runnable after sleeping, its actual
virtual time is updated as follows:

Ai ← max[Ai , SV T]. (6.60)

This policy prevents a thread sleeping for a long time to claim control of the CPU for a longer period
of time than it deserves.

If there are no interrupts, threads are allowed to run for the same amount of virtual time. Individual
threads have weights; a thread with a larger weight consumes its virtual time more slowly. In practice,
each thread τi maintains a constant ki and uses its weight wi to compute the amount � used to advance
its actual virtual time upon completion of a run:

Ai ← Ai + �. (6.61)

Given two threads a and b,

� = ka

wa
= kb

wb
. (6.62)

The EVT policy requires that every time the actual virtual time is updated, a context switch from the
current running thread τi to a thread τ j occurs if

A j � Ai − C

wi
. (6.63)

6.11 Borrowed Virtual Time 191

Example 1. The following example illustrates the application of the BVT algorithm for scheduling
two threads a and b of best-effort applications. The first thread has a weight twice that of the second,
wa = 2wb; when ka = 180 and kb = 90, then � = 90.

We consider periods of real-time allocation of C = 9 mcu. The two threads a and b are allowed to
run for 2C/3 = 6 mcu and C/3 = 3 mcu, respectively.

Threads a and b are activated at times

a : 0, 5, 5 + 9 = 14, 14 + 9 = 23, 23 + 9 = 32, 32 + 9 = 41, . . .

b : 2, 2 + 9 = 11, 11 + 9 = 20, 20 + 9 = 29, 29 + 9 = 38, . . .
(6.64)

The context switches occur at real times:

2, 5, 11, 14, 20, 23, 29, 32, 38, 41, . . . (6.65)

The time is expressed in units of mcu. The initial run is a shorter one, consists of only 3 mcu; a context
switch occurs when a, which runs first, exceeds b by 2 mcu.

Table 6.5 shows the effective virtual time of the two threads at the time of each context switch. At
that moment, its actual virtual time is incremented by an amount equal to � if the thread was allowed

Table 6.5 The real time of the context switch and the effective virtual time Ea(t) and Eb(t) at
the time of a context switch. There is no time warp, so the effective virtual time is the same as
the actual virtual time. At time t = 0, Ea(0)= Eb(0)=0 and we choose thread a to run.

Context Switch Real Time Running Thread Effective Virtual Time of the Running Thread

1 t = 2 a Ea(2) = Aa(2) = Aa(0) + �/3 = 30
b runs next as Eb(2) = 0 < Ea(2) = 30

2 t = 5 b Eb(5) = Ab(5) = Ab(0) + � = 90
a runs next as Ea(5) = 30 < Eb(5) = 90

3 t = 11 a Ea(11) = Aa(11) = Aa(2) + � = 120
b runs next as Eb(11) = 90 < Ea(11) = 120

4 t = 14 b Eb(14) = Ab(14) = Ab(5) + � = 180
a runs next as Ea(14) = 120 < Eb(14) = 180

5 t = 20 a Ea(20) = Aa(20) = Aa(11) + � = 210
b runs next as Eb(20) = 180 < Ea(20) = 210

6 t = 23 b Eb(23) = Ab(23) = Ab(14) + � = 270
a runs next as Ea(23) = 210 < Eb(23) = 270

7 t = 29 a Ea(29) = Aa(29) = Aa(20) + � = 300
b runs next as Eb(29) = 270 < Ea(29) = 300

8 t = 32 b Eb(32) = Ab(32) = Ab(23) + � = 360
a runs next as Ea(32) = 300 < Eb(32) = 360.

9 t = 38 a Ea(38) = Aa(38) = Aa(29) + � = 390
b runs next as Eb(11) = 360 < Ea(11) = 390

10 t = 41 b Eb(41) = Ab(41) = Ab(32) + � = 450
a runs next as Ea(41) = 390 < Eb(41) = 450

192 CHAPTER 6 Cloud Resource Management and Scheduling

9 18 27 36 45

270

360

450

30

120

210

300

390

2 23201411 29 32 38 415

Effective virtual time

Real time (mcu)

180

90

FIGURE 6.11

Example 1, the effective virtual time and the real time of threads a (solid line) and b (dotted line) with weights
wa = 2wb when the actual virtual time is incremented in steps of � = 90 mcu. The real time the two threads
are allowed to use the CPU is proportional to their weights. The virtual times are equal, but thread a consumes
it more slowly. There is no time warp. The threads are dispatched based on their actual virtual time.

to run for its time allocation. The scheduler compares the effective virtual time of the threads and first
runs the one with the minimum effective virtual time.

Figure 6.11 displays the effective virtual time and the real time of threads a and b. When a thread
is running, its effective virtual time increases as the real time increases; a running thread appears as a
diagonal line. When a thread is runnable but not running, its effective virtual time is constant. A runnable
period is displayed as a horizontal line. We see that the two threads are allocated equal amounts of virtual
time, but thread a, with a larger weight, consumes its real time more slowly.

Example 2. Next we consider the previous example, but this time there is an additional thread, c, with
real-time constraints. Thread c wakes up at time t = 9 and then periodically at times t = 18, 27, 36, . . .

for 3 units of time.

Table 6.6 summarizes the evolution of the system when the real-time application thread c competes
with the two best-effort threads a and b. Context switches occur now at real times

t = 2, 5, 9, 12, 14, 18, 21, 23, 27, 30, 32, 36, 39, 41, . . . (6.66)

The context switches at times
t = 9, 18, 27, 36, . . . (6.67)

6.11 Borrowed Virtual Time 193

Table 6.6 A real-time thread c with a time warp Wc = −60 is waking up periodically at times
t = 18, 27, 36, . . . for 3 units of time and is competing with the two best-effort threads a and
b. The real time and the effective virtual time of the three threads of each context switch are
shown.
Context Real Running Effective Virtual Time of the Running Thread

Switch Time Thread

1 t = 2 a Ea(2) = Aa(2) = Aa(0) + �/3 = 0 + 90/3 = 30

2 t = 5 b E1
b = A1

b = A0
b + � = 0 + 90 = 90 ⇒ a runs next

3 t = 9 a c wakes up

E1
a = A1

a + 2�/3 = 30 + (−60) = 90
[Ea(9), Eb(9), Ec (9)] = (90, 90, −60) ⇒ c runs next

4 t = 12 c SVT (12) = min (90, 90)

Es
c (12) = SVT (12) + Wc = 90 + (−60) = 30

Ec (12) = Es
c (12) + �/3 = 30 + 30 = 60 ⇒ b runs next

5 t = 14 b E2
b = A2

b = A1
b + 2�/3 = 90 + 60 = 150 ⇒ a runs next

6 t = 18 a c wakes up

E3
a = A3

a = A2
a + 2�/3 = 90 + 60 = 150

[Ea(18), Eb(18), Ec (18)] = (150, 150, 60) ⇒ c runs next

7 t = 21 c SVT = min (150, 150)

Es
c (21) = SVT + Wc = 150 + (−60) = 90

Ec (21) = Es
c (21) + �/3 = 90 + 30 = 120 ⇒ b runs next

8 t = 23 b E3
b = A3

b = A2
b + 2�/3 = 150 + 60 = 210 ⇒ a runs next

9 t = 27 a c wakes up

E4
a = A4

a = A3
a + 2�/3 = 150 + 60 = 210

[Ea(27), Eb(27), Ec (27)] = (210, 210, 120) ⇒ c runs next

10 t = 30 c SVT = min (210, 210)

Es
c (30) = SVT + Wc = 210 + (−60) = 150

Ec (30) = Es
c (30) + �/3 = 150 + 30 = 180 ⇒ b runs next

11 t = 32 b E4
b = A4

b = A3
b + 2�/3 = 210 + 60 = 270 ⇒ a runs next

10 t = 36 a c wakes up

E5
a = A5

a = A4
a + 2�/3 = 210 + 60 = 270

[Ea(36), Eb(36), Ec (36)] = (270, 270, 180) ⇒ c runs next

12 t = 39 c SVT = min (270, 270)

Es
c (39) = SVT + Wc = 270 + (−60) = 210

Ec (39) = Es
c (39) + �/3 = 210 + 30 = 240 ⇒ b runs next

13 t = 41 b E5
b = A5

b = A4
b + 2�/3 = 270 + 60 = 330 ⇒ a runs next

194 CHAPTER 6 Cloud Resource Management and Scheduling

9 18 27 36 45

90

180

270

360

450

30

120

210

300

390

2 23211412 30 32 39 415

Effective virtual time

Real time (mcu)

-60

FIGURE 6.12

Example 2, the effective virtual time and the real time of threads a (thin solid line), b (dotted line), and c,
with real-time constraints (thick solid line). c wakes up periodically at times t = 9, 18, 27, 36, . . ., is active
for 3 units of time, and has a time warp of 60 mcu.

are triggered by the waking up of thread c, which preempts the currently running thread. At t = 9 the
time warp Wc = −60 gives priority to thread c. Indeed,

Ec(9) = Ac(9) − Wc = 0 − 60 = −60 (6.68)

compared with Ea(9) = 90 and Eb(9) = 90. The same conditions occur every time the real-time thread
c wakes up. The best-effort application threads have the same effective virtual time when the real-time
application thread finishes and the scheduler chooses b to be dispatched first. Note that the ratio of real
times used by a and b is the same, as wa = 2wb.

Figure 6.12 shows the effective virtual times for the three threads a, b, and c. Every time thread c
wakes up, it preempts the current running thread and is immediately scheduled to run.

6.12 Cloud scheduling subject to deadlines
Often, an SLA specifies the time when the results of computations done on the cloud should be available.
This motivates us to examine cloud scheduling subject to deadlines, a topic drawing on a vast body of
literature devoted to real-time applications.

6.12 Cloud Scheduling Subject to Deadlines 195

Task Characterization and Deadlines. Real-time applications involve periodic or aperiodic tasks
with deadlines. A task is characterized by a tuple (Ai , σi , Di), where Ai is the arrival time, σi > 0 is the
data size of the task, and Di is the relative deadline. Instances of a periodic task,

q
i , with period q are

identical,
q
i ≡
q , and arrive at times A0, A1, . . . Ai , . . . , with Ai+1 − Ai = q. The deadlines satisfy

the constraint Di � Ai+1 and generally the data size is the same, σi = σ . The individual instances of
aperiodic tasks,
i , are different. Their arrival times Ai are generally uncorrelated, and the amount of
data σi is different for different instances. The absolute deadline for the aperiodic task
i is (Ai + Di).

We distinguish hard deadlines from soft deadlines. In the first case, if the task is not completed by the
deadline, other tasks that depend on it may be affected and there are penalties; a hard deadline is strict
and expressed precisely as milliseconds or possibly seconds. Soft deadlines play more of a guideline
role and, in general, there are no penalties. Soft deadlines can be missed by fractions of the units used to
express them, e.g., minutes if the deadline is expressed in hours, or hours if the deadlines is expressed
in days. The scheduling of tasks on a cloud is generally subject to soft deadlines, though occasionally
applications with hard deadlines may be encountered.

System Model. In our discussion we consider only aperiodic tasks with arbitrarily divisible workloads.
The application runs on a partition of a cloud, a virtual cloud with a head node called S0 and n worker
nodes S1, S2, . . . , Sn . The system is homogeneous, all workers are identical, and the communication
time from the head node to any worker node is the same. The head node distributes the workload to
worker nodes, and this distribution is done sequentially. In this context there are two important problems:

1. The order of execution of the tasks
i .
2. The workload partitioning and the task mapping to worker nodes.

Scheduling Policies. The most common scheduling policies used to determine the order of execution
of the tasks are:

• First in, first out (FIFO). The tasks are scheduled for execution in the order of their arrival.
• Earliest deadline first (EDF). The task with the earliest deadline is scheduled first.
• Maximum workload derivative first (MWF).

The workload derivative DCi (nmin) of a task
i when nmin nodes are assigned to the application,
is defined as

DCi (n
min) = Wi

(
nmin

i + 1
)

− Wi

(
nmin

i

)
, (6.69)

with Wi (n) the workload allocated to task
i when n nodes of the cloud are available; if E(σi , n) is the
execution time of the task, then Wi (n) = n × E(σi , n). The MWF policy requires that:

1. The tasks are scheduled in the order of their derivatives, the one with the highest derivative DCi first.
2. The number n of nodes assigned to the application is kept to a minimum, nmin

i .

We discuss two workload partitioning and task mappings to worker nodes, optimal and the equal
partitioning.

Optimal Partitioning Rule (OPR). The optimality in OPR refers to the execution time; in this case,
the workload is partitioned to ensure the earliest possible completion time, and all tasks are required to

196 CHAPTER 6 Cloud Resource Management and Scheduling

Table 6.7 The parameters used for scheduling with deadlines.

Name Description

i The aperiodic tasks with arbitrary divisible load of an application A
Ai Arrival time of task
i
Di The relative deadline of task
i
σi The workload allocated to task
i
S0 Head node of the virtual cloud allocated to A
Si Worker nodes 1 � i � n of the virtual cloud allocated to A
σ Total workload for application A
n Number of nodes of the virtual cloud allocated to application A
nmin Minimum number of nodes of the virtual cloud allocated to application A
E(n, σ) The execution time required by n worker nodes to process the workload σ

τ Cost of transferring a unit of workload from the head node S0 to worker Si
ρ Cost of processing a unit of workload
α The load distribution vector α =(α1, α2, . . . , αn)
αi × σ The fraction of the workload allocated to worker node Si
�i Time to transfer the data to worker Si , �i = αi × σ × τ, 1 � i � n
�i Time the worker Si needs to process a unit of data, �i = αi × σ × ρ, 1 � i � n
t0 Start time of the application A
A Arrival time of the application A
D Deadline of application A
C(n) Completion time of application A

complete at the same time. EPR, as the name suggests, means that the workload is partitioned in equal
segments. In our discussion we use the derivations and some of the notations in [218]; these notations
are summarized in Table 6.7.

The timing diagram in Figure 6.13 allows us to determine the execution time E(n, σ) for the OPR as

E(n, σ) = �1 + �1
= �1 + �2 + �2
= �1 + �2 + �3 + �3
...

= �1 + �2 + �3 + · · · + �n + �n .

(6.70)

We substitute the expressions of �i ,�i , 1 � i � n, and rewrite these equations as

E(n, σ) = α1 × σ × τ + α1 × σ × ρ

= α1 × σ × τ + α2 × σ × τ + α2 × σ × ρ

= α1 × σ × τ + α2 × σ × τ + α3 × σ × τ + α3 × σ × ρ

= ...

= α1 × σ × τ + α2 × σ × τ + α3 × σ × τ + · · · + αn × σ × τ + αn × σ × ρ.

(6.71)

6.12 Cloud Scheduling Subject to Deadlines 197

Γ1 Γ2 Γ3 Γn

1Δ

2Δ

nΔ

3Δ

0

n

3

2

1

S

S

S

S

S

FIGURE 6.13

The timing diagram for the optimal partitioning rule. The algorithm requires worker nodes to complete
execution at the same time. The head node, S0, distributes sequentially the data to individual worker nodes.
The communication time is �i = αi × σ × τ, 1 � i � n. Worker node Si starts processing the data as soon
as the transfer is complete. The processing time is �i = αi × σ × ρ, 1 � i � n.

From the first two equations we find the relation between α1 and α2 as

α1 = α2

β
with β = ρ

τ + ρ
, 0 � β � 1. (6.72)

This implies that α2 = β × α1. It is easy to see that in the general case

αi = β × αi−1 = β i−1 × α1. (6.73)

But αi are the components of the load distribution vector; thus,

n∑
i=1

αi = 1. (6.74)

Next, we substitute the values of αi and obtain the expression for α1:

α1 + β × α1 + β2 × α1 + β3 × α1 . . . βn−1 × α1 = 1 or α1 = 1 − β

1 − βn
. (6.75)

We have now determined the load distribution vector and we can now determine the execution time as

E(n, σ) = α1 × σ × τ + α1 × σ × ρ = 1 − β

1 − βn
σ(τ + ρ). (6.76)

198 CHAPTER 6 Cloud Resource Management and Scheduling

Call CA(n) the completion time of an application A = (A, σ, D), which starts processing at time t0
and runs on n worker nodes; then

CA(n) = t0 + E(n, σ) = t0 + 1 − β

1 − βn
σ(τ + ρ). (6.77)

The application meets its deadline if and only if

CA(n) � A + D, (6.78)

or

t0 + E(n, σ) = t0 + 1 − β

1 − βn
σ(τ + ρ) � A + D. (6.79)

But 0 < β < 1 thus, 1 − βn > 0, and it follows that

(1 − β)σ(τ + ρ) � (1 − βn)(A + D − t0). (6.80)

The application can meet its deadline only if (A + D − t0) > 0, and under this condition this inequality
becomes

βn � γ with γ = 1 − σ × τ

A + D − t0
. (6.81)

If γ � 0, there is not enough time even for data distribution and the application should be rejected.
When γ > 0, then n � ln γ

ln β
. Thus, the minimum number of nodes for the OPR strategy is

nmin =
 ln γ

ln β
�. (6.82)

Equal Partitioning Rule (EPR). EPR assigns an equal workload to individual worker nodes,αi = 1/n.
From the diagram in Figure 6.14 we see that

E(n, σ) =
n∑

i=1

�i + �n = n × σ

n
× τ + σ

n
× ρ = σ × τ + σ

n
× ρ. (6.83)

The condition for meeting the deadline, CA(n) � A + D, leads to

t0 + σ × τ + σ

n
× ρ � A + D or n � σ × ρ

A + D − t0 − σ × τ
. (6.84)

Thus,

nmin =
⌈

σ × ρ

A + D − t0 − σ × τ

⌉
. (6.85)

The pseudocode for a general schedulability test for FIFO, EDF, and MWF scheduling policies, for
two-node allocation policies, MN (minimum number of nodes) and AN (all nodes), and for OPR and
EPR partitioning rules is given in reference [218]. The same paper reports on a simulation study for 10
algorithms. The generic format of the names of the algorithms is Sp-No-Pa, with Sp = FIFO/EDF/MWF,
No = MN/AN, and Pa = OPR/EPR. For example, MWF-MN-OPR uses MWF scheduling, minimum
number of nodes, and OPR partitioning. The relative performance of the algorithms depends on the
relations between the unit cost of communication τ and the unit cost of computing ρ.

6.13 Scheduling MapReduce Applications Subject to Deadlines 199

Γ1 Γ2 Γ3 Γn

1Δ

2Δ

nΔ

3Δ

0

n

3

2

1

S

S

S

S

S

FIGURE 6.14

The timing diagram for the equal partitioning rule. The algorithm assigns an equal workload to individual
worker nodes, αi = 1/n. The head node, S0, distributes sequentially the data to individual worker nodes.
The communication time is �i = (σ/n) × τ, 1 � i � n. Worker node Si starts processing the data as soon as
the transfer is complete. The processing time is �i = (σ/n) × ρ, 1 � i � n.

6.13 Scheduling MapReduce applications subject to deadlines
Now we turn our attention to applications of the analysis in Section 6.12 and discuss scheduling of
MapReduce applications on the cloud subject to deadlines. Several options for scheduling Apache
Hadoop, an open-source implementation of the MapReduce algorithm, are:

• The default FIFO schedule.
• The Fair Scheduler [383].
• The Capacity Scheduler.
• The Dynamic Proportional Scheduler [315].

A recent paper [186] applies the deadline scheduling framework analyzed to Hadoop tasks. Table 6.8
summarizes the notations used for the analysis of Hadoop; the term slots is equivalent with nodes and
means the number of instances.

We make two assumptions for our initial derivation:

• The system is homogeneous; this means that ρm and ρr , the cost of processing a unit data by the
map and the reduce task, respectively, are the same for all servers.

• Load equipartition.

Under these conditions the duration of the job J with input of size σ is

E(nm, nr , σ) = σ

[
ρm

nm
+ φ

(
ρr

nr
+ τ

)]
. (6.86)

200 CHAPTER 6 Cloud Resource Management and Scheduling

Table 6.8 The parameters used for scheduling with deadlines.

Name Description

Q The query Q = (A, σ, D)

A Arrival time of query Q
D Deadline of query Q

i

m A map task, 1 � i � u

j
r A reduce task, 1 � j � v

J The job to perform the query Q = (A, σ, D), J =
(

1

m,
2
m, . . . ,
u

m,
1
r ,
2

r , . . . ,
v
r

)
τ Cost for transferring a data unit
ρm Cost of processing a unit data in map task
ρr Cost of processing a unit data in reduce task
nm Number of map slots
nr Number of reduce slots

nmin
m Minimum number of slots for the map task

n Total number of slots, n = nm + nr

t0
m Start time of the map task

tmax
r Maximum value for the start time of the reduce task
α Map distribution vector; the EPR strategy is used and, αi = 1/u
φ Filter ratio, the fraction of the input produced as output by the map process

Thus, the condition that query Q = (A, σ, D) with arrival time A meets the deadline D can be
expressed as

t0
m + σ

[
ρm

nm
+ φ

(
ρr

nr
+ τ

)]
� A + D. (6.87)

It follows immediately that the maximum value for the start-up time of the reduce task is

tmax
r = A + D − σφ

(
ρr

nr
+ τ

)
. (6.88)

We now plug the expression of the maximum value for the start-up time of the reduce task into the
condition to meet the deadline

t0
m + σ

ρm

nm
� tmax

r . (6.89)

It follows immediately that nmin
m , the minimum number of slots for the map task, satisfies the condition

nmin
m � σρm

tmax
r − t0

m
, thus, nmin

m =
 σρm

tmax
r − t0

m
�. (6.90)

The assumption of homogeneity of the servers can be relaxed and we assume that individual servers
have different costs for processing a unit workload ρi

m �= ρ
j
m and ρi

t �= ρ
j
t . In this case we can use the

minimum values ρm = min ρi
m and ρr = min ρi

r in the expression we derived.

6.14 Resource Management and Dynamic Application Scaling 201

A Constraints Scheduler based on this analysis and an evaluation of the effectiveness of this scheduler
are presented in [186].

6.14 Resource management and dynamic application scaling
The demand for computing resources, such as CPU cycles, primary and secondary storage, and net-
work bandwidth, depends heavily on the volume of data processed by an application. The demand for
resources can be a function of the time of day, can monotonically increase or decrease in time, or can
experience predictable or unpredictable peaks. For example, a new Web service will experience a low
request rate when the service is first introduced and the load will exponentially increase if the service is
successful. A service for income tax processing will experience a peak around the tax filling deadline,
whereas access to a service provided by Federal Emergency Management Agency (FEMA) will increase
dramatically after a natural disaster.

The elasticity of a public cloud, the fact that it can supply to an application precisely the amount
of resources it needs and that users pay only for the resources they consume are serious incentives to
migrate to a public cloud. The question we address is: How scaling can actually be implemented in a
cloud when a very large number of applications exhibit this often unpredictable behavior [62,233,357].
To make matters worse, in addition to an unpredictable external load the cloud resource management
has to deal with resource reallocation due to server failures.

We distinguish two scaling modes: vertical and horizontal. Vertical scaling keeps the number of VMs
of an application constant, but increases the amount of resources allocated to each one of them. This
can be done either by migrating the VMs to more powerful servers or by keeping the VMs on the same
servers but increasing their share of the CPU time. The first alternative involves additional overhead;
the VM is stopped, a snapshot of it is taken, the file is transported to a more powerful server, and, finally,
the VM is restated at the new site.

Horizontal scaling is the most common mode of scaling on a cloud; it is done by increasing the
number of VMs as the load increases and reducing the number of VMs when the load decreases. Often,
this leads to an increase in communication bandwidth consumed by the application. Load balancing
among the running VMs is critical to this mode of operation. For a very large application, multiple load
balancers may need to cooperate with one another. In some instances the load balancing is done by a
front-end server that distributes incoming requests of a transaction-oriented system to back-end servers.

An application should be designed to support scaling. As we saw in Section 4.6 in the case of a
modularly divisible application, the workload partitioning is static, it is decided a priori, and cannot be
changed; thus, the only alternative is vertical scaling. In the case of an arbitrarily divisible application
the workload can be partitioned dynamically; as the load increases, the system can allocate additional
VMs to process the additional workload. Most cloud applications belong to this class, which justifies
our statement that horizontal scaling is the most common scaling mode.

Mapping a computation means to assign suitable physical servers to the application. A very important
first step in application processing is to identify the type of application and map it accordingly. For
example, a communication-intensive application should be mapped to a powerful server to minimize
the network traffic. This may increase the cost per unit of CPU usage, but it will decrease the computing
time and probably reduce the overall cost for the user. At the same time, it will reduce the network
traffic, a highly desirable effect from the perspective of the cloud service provider. To scale up and

202 CHAPTER 6 Cloud Resource Management and Scheduling

down a compute-intensive application, a good strategy is to increase or decrease the number of VMs or
instances. Because the load is relatively stable, the overhead of starting up or terminating an instance
does not increase significantly the computing time or the cost.

There are several strategies to support scaling. Automatic VM scaling uses predefined metrics, e.g.,
CPU utilization, to make scaling decisions. Automatic scaling requires sensors to monitor the state of
VMs and servers; controllers make decisions based on the information about the state of the cloud, often
using a state machine model for decision making. Amazon and Rightscale (www.rightscale.com)
offer automatic scaling. In the case of AWS the CloudWatch service supports applications monitoring
and allows a user to set up conditions for automatic migrations.

Nonscalable or single-load balancers are also used for horizontal scaling. The Elastic Load Balanc-
ing service from Amazon automatically distributes incoming application traffic across multiple EC2
instances. Another service, the Elastic Beanstalk, allows dynamic scaling between a low and a high
number of instances specified by the user (see Section 3.1). The cloud user usually has to pay for the
more sophisticated scaling services such as Elastic Beanstalk.

6.15 Further reading
Cloud resource management poses new and extremely challenging problems, so it should be no surprise
that it is a very active area of research. A fair number of papers, including [22,65,75,77,113,114,115,120,
138,139,151,155,162,184,238,275,307,313] are dedicated to various resource management policies.
Several papers are concerned with SLA and QoS; e.g., [4] covers SLA-driven capacity management
and [23] covers SLA-based resource allocation policies. Dynamic request scheduling of applications
subject to SLA requirements is presented in [54]. The QoS in clouds is analyzed in [121].

Autonomic computing [130] is the subject of papers such as [24], which covers energy-aware resource
allocation in autonomic computing; [188], which analyzes policies for autonomic computing based on
utility functions; [187], which discusses coordination of multiple autonomic managers and power-
performance tradeoffs; and [9], which presents autonomic management of cloud services subject to
availability guarantees.

Auctions in which participants can bid on combinations of items or packages are called combinatorial
auctions [93]. Such auctions provide a relatively simple, scalable, and tractable solution to cloud resource
allocation. Two recent combinatorial auction algorithms are the simultaneous clock auction [29] and
the clock proxy auction [30]; the algorithm discussed in this chapter and introduced in [333] is called
the ascending clock auction (ASCA).

An authoritative reference on fault tolerance is [31]; applications of control theory to resource allo-
cation discussed in [70,109] cover resource multiplexing in data centers. Admission control policies are
discussed in [150]. Power and performance management are the subject of [202], and performance man-
agement for cluster-based Web services is covered in [280]. Autonomic management of heterogeneous
workloads is discussed in [344], and application placement controllers are the topic of [346].

Scheduling and resource allocation are also covered by numerous papers: a batch queuing sys-
tem on clouds with Hadoop and HBase is presented in [387]; data flow-driven scheduling for busi-
ness applications is covered in [106]. Scalable thread scheduling is the topic of [374]. Scheduling of
real-time services in cloud computing is presented in [220]. The Open Grid Forum (OGF) Open Cloud

6.16 Exercises and Problems 203

Computing Interface (OCCI) is involved in the definition of virtualization formats and APIs for IaaS
[175] presents a performance analyzer.

6.16 Exercises and problems
Problem 1. Analyze the benefits and the problems posed by the four approaches to the implementation

of resource management policies: control theory, machine learning, utility-based, and
market-oriented.

Problem 2. Can optimal strategies for the five classes of policy – admission control, capacity alloca-
tion, load balancing, energy optimization, and QoS guarantees – be actually implemented
in a cloud? The term optimal is used in the sense of control theory. Support your answer
with solid arguments. Optimal strategies for one could be in conflict with optimal strategies
for one or more of the other classes. Identify and analyze such cases.

Problem 3. Analyze the relationship between the scale of a system and the policies and the mechanisms
for resource management. In your arguments, consider also the geographic scale of the
system.

Problem 4. What are the limitations of the control theoretic approach discussed in Section 6.2? Do the
approaches discussed in Sections 6.3 and 6.4 remove or relax some of these limitations?
Justify your answers.

Problem 5. Multiple controllers are probably necessary due to the scale of a cloud. Is it beneficial
to have system and application controllers? Should the controllers be specialized – for
example, some to monitor performance, others to monitor power consumption? Should
all the functions we want to base the resource management policies on be integrated in
a single controller and one such controller be assigned to a given number of servers or a
geographic region? Justify your answers.

Problem 6. In a scale-free network, the nodes have an exponential degree distribution (see Section
7.11). A scale-free network could be used as a virtual network infrastructure for cloud com-
puting. Controllers represent a dedicated class of nodes tasked with resource management.
In a scale-free network, nodes with high connectivity can be designated as controllers.
Analyze the potential benefit of such a strategy.

Problem 7. Use the start-time fair queuing (SFQ) scheduling algorithm to compute the virtual start-up
and the virtual finish time for two threads a and b with weights wa = 1 and wb = 5 when
the time quantum is q = 15 and thread b blocks at time t = 24 and wakes up at time
t = 60. Plot the virtual time of the scheduler function of the real time.

Problem 8. Apply the borrowed virtual time (BVT) scheduling algorithm to the problem in Example 2
of Section 6.11 but with a time warp of Wc = −30.

Problem 9. Consider the workflow for your favorite cloud application. Use XML to describe this
workflow, including the instances and the storage required for each task. Translate this
description into a file that can be used for the Elastic Beanstalk AWS.

This page is intentionally left blank

7
CHAPTER

Networking Support

Cloud computing and delivery of content stored on a cloud are feasible only due to the interconnectivity
supported by a continually evolving Internet and by the access to remote resources provided by the World
Wide Web. A cloud is built around a high-performance interconnect; the servers in a cloud communicate
through high-bandwidth and low-latency specialized networks. It is thus obvious why networking will
continue to play a crucial role in the evolution of cloud computing and a content-centric world.

This chapter starts with a review of basic concepts related to packet switching and the Internet in
Sections 7.1 and 7.2. The need to accommodate a very large address space is discussed in Section 7.3;
then the transformational changes suffered by the Internet under the pressure of applications are surveyed
in Section 7.4. Section 7.5 covers statistics regarding Web metrics and the arguments for increasing
the initial congestion control window in TCP. Models for network resource management are analyzed
in Section 7.6. Efficient topologies for computer clouds and storage area networks are discussed in
Sections 7.7 and 7.8, respectively. Overlay networks, small-world networks, and scale-free networks
are presented in Sections 7.10 and 7.11. Finally, Section 7.12 is devoted to a discussion of epidemic
algorithms.

7.1 Packet-switched networks
The access to a cloud is provided by the Internet, a packet-switched network; thus, we start our discussion
with an overview of this important concept. A packet-switched network transports data units called
packets through a maze of switches, where packets are queued and routed toward their destination.
Packets are subject to a variable delay and loss and possibly arrive at their final destination out of order.
A datagram is a basic transfer unit in a packet-switched network; it consists of a header, which contains
control information necessary for its transport through the network, and a payload or data.

A packet-switched network has a network core consisting of routers and control systems intercon-
nected by very high-bandwidth communication channels and a network edge where the end-user systems
reside. A network architecture describes the protocol stack used for communication. A protocol is a
discipline for communication that specifies the actions taken by the sender and the receiver of a data
unit. We use the term host to describe a system located at the network edge and capable of initiating
and receiving communication, whether a computer, a mobile device such as an phone, or a sensor.

This very concise description hints that a packet-switched network is a complex system consisting of
a very large number of autonomous components and subject to complex and sometimes contradictory
requirements. Basic strategies for implementing a complex system are layering and modularization; this
means decomposing a complex function into components that interact through well-defined channels
(e.g., a layer can only communicate with its two adjacent layers).

Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00007-5
© 2013 Elsevier Inc. All rights reserved.

205

206 CHAPTER 7 Networking Support

Application Layer
(Message)

Transport Layer

Network Layer

Physical
Layer

HostHost

Network Layer Network Layer

Router Router

Physical
Layer

Physical
Layer

Physical
Layer

Data Link Layer Data Link
Layer

Data Link
Layer

Network

Application Layer

Transport Layer

Network Layer

Data Link Layer

(Segment) (Segment)

(Packet) (Packet)

(Message)

(Frame) (Frame)

Streams of bits encoded as electrical, optical, or electromagnetic signals

FIGURE 7.1

Protocol stacks. Applications running on hosts at the edge of the network communicate using application
layer protocols. The transport layer deals with end-to-end delivery. The network layer is responsible for
routing a packet through the network. The data link layer ensures reliable communication between adjacent
nodes of the network, and the physical layer transports streams of bits encoded as electrical, optical, or
electromagnetic signals (the thick lines represent such bit pipes). The corresponding data units for the
five-layer architecture are messages, segments, packets, frames, and encoded bits, respectively.

All network architectures are based on layering; this justifies the term protocol stack, as shown in
Figure 7.1. In the Internet architecture the network layer is responsible for routing packets through
the packet-switched network from the source to the destination. The transport layer is responsible for
end-to-end communication, from an application running on the sending host to its peer running on the
destination host.

Physically, at the sender site the data flows down the protocol stack from the application layer to the
transport, network, and data link layers; the streams of bits are pushed through a physical communication
link encoded as electrical, optical, or electromagnetic signals. Once they reach a router, the bits are passed
to the data link and then to the network layer.

The network layer decides where the packet should be sent, either to another router or to a destination
host connected to a local area network connected to the router. Then the data link layer encapsulates
the packet for the communication link to the next hop, and then the bit stream is passed to the next
physical channel (see Figure 7.1). At the receiving end the data flows upward from the data link to the
application layer.

A protocol on one system communicates logically with its peer on another system. For example,
the transport protocol on the sender, host A, communicates with the transport protocol on the receiver,
host B. On the sending side, A, the transport protocol encapsulates the data from the application layer and
adds control information as headers that can only be understood by its peer, the transport layer on host B.

7.2 The Internet 207

When the peer receives the data unit, it carries out a decapsulation, retrieves the control information,
removes the headers, then passes the payload to the next layer up, the application layer on host B.

The payload for the data link layer at the sending side includes the network header and the payload at
the network layer. In turn, the network layer payload includes a transport layer header and its payload,
consisting of the application layer header and application data.

7.2 The Internet
The Internet is a collection of separate and distinct networks, each one operating under a common
framework consisting of globally unique IP addressing and using IP routing and global Border Gateway
Routing (BGP) protocols.1 An IP address is a string of integers uniquely identifying every host connected
to the Internet; the IP address allows the network to identify first the destination network and then the
host in that network to which a datagram should be delivered.

In addition to the IP or logical address, each network interface, the hardware connecting a host with a
network, has a unique physical or MAC address. Although the MAC address is permanently assigned to
a network interface of the device, the IP address may be dynamically assigned and changes depending
on the network. For example, a laptop will get a different IP address when it is connected to different net-
works and a phone will get different IP addresses in different Wi-Fi networks. A host may have multiple
network interfaces and, consequently, multiple IP addresses when it is connected to multiple networks.

The Internet is based on a hourglass network architecture and the TCP/IP protocol family (see
Figure 7.2). The hourglass model captures the fact that all packets transported through the Internet use
Internet Protocol (IP) to reach the destination. IP ensures datagrams’ delivery from the source host to
the destination host based on their IP addresses. A host could be a supercomputer, a workstation, a
laptop, a mobile phone, a network printer, or any other physical device with a network interface.

IP only provides best-effort delivery and its service is characterized as unreliable. Best-effort delivery
means that any router on the path from the source to the destination may drop a packet when it is
overloaded.

The Internet uses two transport protocols: a connectionless datagram protocol, User Datagram
Protocol (UDP), and a connection-oriented protocol, Transport Control Protocol (TCP). The header
of a datagram contains information sufficient for routing through the network from the source to the
destination.

To ensure efficient communication, the UDP transport protocol assumes that error checking and
error correction are either not necessary or performed by the application. Datagrams may arrive out of
order or duplicated, or may not arrive at all. Applications using UDP include the Domain Name System
(DNS), Voice over IP (VoIP), Trivial File Transfer Protocol (TFTP), streaming media applications such
as Internet Protocol television (IPTV), and online games.

Once a packet reaches the destination host, it is delivered to the proper transport protocol daemon,
which, in turn, delivers it to the application that listens to an abstraction of the endpoint of a logical
communication channel called a port (see Figure 7.3). The processes or threads running an application

1The Border Gateway Protocol (BGP) is a path vector reachability protocol that makes the core routing decisions on the
Internet. It maintains a table of networks that designate network reachability among autonomous systems. BGP makes routing
decisions based on path, network policies, and/or rule sets.

208 CHAPTER 7 Networking Support

Teleconferencing

Email
TelnetApplication Layer

Transport Layer

Network Layer

Physical and Data Link Layers

LANs
Wireless

Direct
Broadcast
Satellite

ATM

Dial-up
Modems

Videoconferencing

WWW

FTP

IP

Cable

Frame
Relay

RealAudio

TCP
UDP

FIGURE 7.2

The hourglass network architecture of the Internet. Regardless of the application, the transport protocol, and
the physical network, all packets are routed through the Internet from the source to the destination by the
IP protocol, and routing is based on the destination IP address.

use an abstraction called socket to send and receive data through the network. A socket manages a queue
of incoming messages and one of outgoing messages.

TCP provides reliable, ordered delivery of a stream of bytes from an application on one system to
its peer on the destination system. An application sends/receives data units called segments to/from
a specific port, an abstraction of and endpoint of a logical communication link. TCP is the transport
protocol used by the World Wide Web, email, file transfer, remote administration, and many other
important applications.

TCP uses an end-to-end flow control mechanism based on a sliding window, a range of packets the
sender can send before receiving an acknowledgment from the receiver. This mechanism allows the
receiver to control the rate of segments sent and process them reliably.

A network has a finite capacity to transport data, and when its load is approaching this capacity, we
witness undesirable effects: The routers start dropping packets, and the delays and the jitter increase. An
obvious analogy is a highway on which the time to travel from point A to point B increases dramatically
when the highway becomes congested; a solution for traffic management is to introduce traffic lights
limiting the rate at which new traffic is allowed to enter the highway, and this is precisely what the TCP
emulates.

TCP uses several mechanisms for congestion control (see Section 7.5). These mechanisms control
the rate of data entering the network, keeping the data flow below a rate that would lead to a network

7.2 The Internet 209

Host

Process

Network Network

Router
Network

interface
Port

IP address: NetworkId+HostId

FIGURE 7.3

Packet delivery to processes and threads. The packet is first routed by the IP protocol to the destination
network and then to the host specified by the IP address. Each application listens to an abstraction of the
endpoint of a logical communication channel called a port.

collapse and enforce a max/min fair allocation between flows. Section acknowledgment coupled to
timers is used to infer network conditions between the sender and receiver.

TCP congestion control policies are based on four algorithms: slow-start, congestion avoidance, fast
retransmit, and fast recovery. These algorithms use local information, such as the retransmission timeout
(RTO) based on the estimated round-trip time (RTT) between the sender and receiver as well as the
variance in this round-trip time to implement the congestion control policies. UDP is a connectionless
protocol, so there are no means to control the UDP traffic.

The review of basic networking concepts in this section shows why process-to-process communica-
tion incurs a significant overhead. Though raw speed of fiber optic channels can reach Tbps,2 the actual
transmission rate for end-to-end communication over a wide area network can only be of the order of
tens of Mbps and the latency is of the order of milliseconds. This has important consequences for the
development of computer clouds.

2Nippon Telegraph and Telephone (NTT) achieved a speed of 69.1 Tbps in 2010; to do so it used wavelength division
multiplex (WDM) of 432 wavelengths with a capacity of 171 Gbps over a single 240-km-long optical fiber. Note that the
term speed is used informally to describe the maximum data transmission rate, or the capacity of a communication channel.
This capacity is determined by the physical bandwidth of the channel and explains why the term channel bandwidth is also
used to measure the channel capacity, or the maximum data rate.

210 CHAPTER 7 Networking Support

7.3 Internet migration to IPv6
The Internet addressing capabilities and the migration of IPv6 are important for cloud computing, as we
shall see in this section. The Internet Protocol, Version 4 (IPv4), provides an addressing capability of
232, or approximately 4.3 billion addresses, a number that proved to be insufficient. Indeed, the Internet
Assigned Numbers Authority (IANA) assigned the last batch of five address blocks to the Regional
Internet Registries in February 2011, officially depleting the global pool of completely fresh blocks of
addresses. Each of the address blocks represents approximately 16.7 million possible addresses.

The Internet Protocol, Version 6 (IPv6), provides an addressing capability of 2128, or 3.4 × 1038

addresses. There are other major differences between IPv4 and IPv6:

• Multicasting. IPv6 does not implement traditional IP broadcast, (i.e., the transmission of a packet
to all hosts on the attached link using a special broadcast address) and, therefore, does not define
broadcast addresses. IPv6 supports new multicast solutions, including embedding rendezvous point
addresses in an IPv6 multicast group address, which simplifies the deployment of interdomain
solutions.

• Stateless address autoconfiguration (SLAAC). IPv6 hosts can configure themselves automatically
when they are connected to a routed IPv6 network using the Internet Control Message Protocol
version 6 (ICMPv6) router discovery messages. When first connected to a network, a host sends a
link-local router solicitation multicast request for its configuration parameters; if configured suitably,
routers respond to such a request with a router advertisement packet that contains network-layer
configuration parameters.

• Mandatory support for network security. Internet Network Security (IPsec) is an integral part of the
base protocol suite in IPv6; it is optional for IPv4. IPsec is a protocol suite operating at the IP layer.
Each IP packet is authenticated and encrypted. Other security protocols operate at the upper layers
of the TCP/IP suite (e.g., the Secure Sockets Layer (SSL), the Transport Layer Security (TLS), and
the Secure Shell (SSH)). IPsec uses several protocols: (1) Authentication Headers (AH) – supports
connectionless integrity, data origin authentication for IP datagrams, and protection against replay
attacks; (2) Encapsulating Security Payloads (ESP) – supports confidentiality, data-origin authenti-
cation, connectionless integrity, an anti-replay service, and limited traffic-flow confidentiality; and
(3) Security Associations (SA) – provides the parameters necessary to operate the AH and/or ESP
operations.

Unfortunately, migration to IPv6 is a very challenging and costly proposition. A simple analogy
allows us to explain the difficulties related to migration to IPv6. The telephone numbers in North America
consist of 10 decimal digits; this scheme supports up to 10 billion phones, but, in practice, we have fewer
available numbers than that. Indeed, some phone numbers are wasted because we use area codes based
on geographic proximity and, on the other hand, not all available numbers in a given area are allocated.

To overcome the limited number of phone numbers in this scheme, large organizations use private
phone extensions of typically three to five digits. Thus, a single public phone number can translate
to 1,000 phones for an organization using a three-digit extension. Analogously, Network Address
Translation (NAT) allows a single public IP address to support hundreds or even thousands of pri-
vate IP addresses. In the past NAT did not work well with applications such as VoIP and virtual private

7.4 The Transformation of the Internet 211

networking (VPN). Nowadays Skype and STUN VoIP applications work well with NAT and NAT-T,
and SSLVPN supports VPN NAT.

If the telephone companies decide to promote a new system based on 40-decimal-digit phone num-
bers, we will need new telephones; at the same time we will need new phone books that are much
thicker because each phone number is 40 characters instead of 10. Each individual will need a new
personal address book, and virtually all the communication and switching equipment and software will
need to be updated. Similarly, the IPv6 migration involves upgrading all applications, hosts, routers, and
DNS infrastructure. Also, moving to IPv6 requires backward compatibility, because any organization
migrating to IPv6 should maintain a complete IPv4 infrastructure.

In 2009 a group from Google investigated the adoption of IPv6 [89] and concluded that “… the
IPv6 deployment is small but growing steadily, and that adoption is still heavily influenced by a small
number of large deployments. While we see IPv6 adoption in research and education networks, IPv6
deployment is, with one notable exception, largely absent from consumer access networks.”

7.4 The transformation of the Internet
There is no doubt that the decades-long evolution of microprocessor and storage technologies, computer
architecture and software systems, and parallel algorithms and distributed control strategies paved the
way for cloud computing. Yet we have to recognize that the fascinating developments in networking
are at the heart of this new technology. In this section we only discuss those features of the Internet
affecting cloud computing.

The Internet is continually evolving under the pressure of its own success and the need to accom-
modate new applications and a larger number of users; initially conceived as a data network, a network
supporting only the transport of data files, it has morphed into today’s network for data with real-time
constraints for multimedia applications. To understand the architectural consequences of this evolution,
we examine first the relations between two networks:

• Peering, in which the two networks freely exchange traffic between each other’s customers.
• Transit, in which a network pays another one to access the Internet.
• Customer, in which a network is paid money to allow Internet access.

Based on these relations the networks are commonly classified as Tier 1, 2, and 3 (Figure 7.4). A
Tier 1 network can reach every other network on the Internet without purchasing IP transit or paying
settlements; examples of Tier 1 networks are Verizon, ATT, NTT and Deutsche Telecom.

A Tier 2 network is an Internet service provider (ISP) that engages in the practice of peering with
other networks but that still purchases IP transit to reach some portion of the Internet. Tier 2 providers
are the most common providers on the Internet. A Tier 3 network purchases transit rights from other
networks (typically Tier 2 networks) to reach the Internet. A point-of-presence (POP) is an access point
from one place to the rest of the Internet.

An Internet exchange point (IXP) is a physical infrastructure allowing ISPs to exchange Internet
traffic. The primary purpose of an IXP is to allow networks to interconnect directly via the exchange
rather than through one or more third-party networks. The advantages of the direct interconnection
are numerous, but the primary reasons to implement an IXP are cost, latency, and bandwidth. Traffic

212 CHAPTER 7 Networking Support

Internet — Tier 1 networks

Tier 2 network

POP 1

Tier 2 network

Tier 3 networks

Internet users

FIGURE 7.4

The relation of Internet networks based on the transit and paying settlements. There are three classes of
networks: Tier 1, 2, and 3. An IXP is a physical infrastructure that allows ISPs to exchange Internet traffic.

passing through an exchange is typically not billed by any party, whereas traffic to an ISP’s upstream
provider is.

IXPs reduce the portion of an ISP’s traffic that must be delivered via their upstream transit providers,
thereby reducing the average per-bit delivery cost of their service. Furthermore, the increased number
of paths through the IXP improves routing efficiency and fault tolerance. A typical IXP consists of one
or more network switches, to which each of the participating ISPs connects.

New technologies such as Web applications, cloud computing, and content-delivery networks are
reshaping the definition of a network, as shown in Figure 7.5 [203]. The Web, gaming, and entertainment
are merging, and more computer applications are moving to the cloud. Data streaming consumes an
increasingly large fraction of the available bandwidth as high-definition TV (HDTV) sets become
less expensive and content providers such as Netflix and Hulu offer customers services that require a
significant increase in network bandwidth.

Does the network infrastructure keep up with the demand for bandwidth? The Internet infrastructure
in the United States is falling behind in terms of network bandwidth, as illustrated in Figure 7.6. A
natural question to ask is: Where is the actual bottleneck that limits the bandwidth available to a typical
Internet broadband user? The answer is: the “last mile,” the link connecting the home to the ISP network.

7.4 The Transformation of the Internet 213

Sprint, MCI, UUnet, Psnet

NAP NAPNAP

National

(a)

(b)

Backbone
Operators

Regional
Access

Providers

Local
Access

Providers

Textbook Internet prior to 2007; the global core consists of Tier 1 networks.

Customer IP
Networks

ISP 1 ISP 2 ISP 3 ISP n

The 2009 Internet reflects the effect of commoditization of IP hosting and of
content-delivery networks (CDNs).

Regional-
Tier 2

providers

Customer IP
Networks

IXP IXP IXP

ISP 1

“Hyper Giants”
Large Content, Consume, Hosting CDN

Global Transit/
National Backbones

ISP 2

Global
Internet

Core

FIGURE 7.5

The transformation of the Internet. The traffic carried by Tier 3 networks increased from 5.8% in 2007 to
9.4% in 2009. Google applications accounted for 5.2% of the traffic in 2009 [203].

Recognizing that the broadband access infrastructure ensures continual growth of the economy and
allows people to work from any site, Google has initiated the Google Fiber Project, which aims to
provide 1 Gb/s access speed to individual households through FTTH.3

3Fiber-to-the-home (FTTH) is a broadband network architecture that uses optical fiber to replace the copper-based local loop
used for the last mile of network access to the home.

214 CHAPTER 7 Networking Support

FIGURE 7.6

Broadband access, the average download speed advertised by a range of countries.

7.5 Web access and the TCP congestion control window
The Web supports access to content stored on a cloud; virtually all cloud computing infrastructures
allow users to interact with their computations on the cloud using Web-based systems. Thus, it should
be clear that the metrics related to Web access are important for designing and tuning networks.

The site http://code.google.com/speed/articles/web-metrics.html provides
statistics about metrics such as size and number of resources; Table 7.1 summarizes these metrics.
The statistics are collected from a sample of several billion pages detected during Google’s crawl and
indexing pipeline.

Table 7.1 Web statistics.

Metric Value

Number of sample pages analyzed 4.2 × 109

Average number of resources per page 44
Average number of GETs per page 44.5
Average number of unique host names encountered per page 7
Average size transferred over the network per page, including HTTP headers 320 KB
Average number of unique images per page 29
Average size of the images per page 206 KB
Average number of external scripts per page 7
Number of sample SSL (HTTPS) pages analyzed 17 × 106

7.5 Web Access and the TCP Congestion Control Window 215

Such statistics are useful for tuning the transport protocols to deliver optimal performance in terms
of latency and throughput. HTTP, the application protocol for Web browsers, uses TCP, which supports
mechanisms to limit the amount of data transported over the network to avoid congestion. Metrics,
such as the average size of a page or the number of GET operations, are useful to explain the results
of performance measurements carried out on existing systems and to propose changes to optimize the
performance, as discussed next.

Another example illustrating the need for the networking infrastructure to adapt to new requirements
is the TCP initial congestion window. Before we analyze this problem in depth, we review two important
mechanisms to control data transport, called flow control and congestion control. TCP seeks to achieve
high channel utilization, avoid congestion, and, at the same time, ensure a fair sharing of the network
bandwidth.

TCP uses a sliding window flow control protocol. If W is the window size, then the data rate S of
the sender is:

S = W × MSS

RTT
bps = W

RTT
packets/second,

where MSS and RTT denote the maximum segment size and the round-trip time, respectively. If
S is too, small, the transmission rate is smaller than the channel capacity, whereas a large S leads to
congestion. The channel capacity in the case of communication over the Internet is not a fixed quantity,
but, as different physical channels are shared among many flows, it depends on the load of the network.

The actual window size W is affected by two factors: (a) the ability of the receiver to accept new
data and (b) the sender’s estimation of the available network capacity. The receiver specifies the amount
of additional data it is willing to accept in the receive window field of every frame; the receive window
shifts when the receiver receives and acknowledges a new segment of data. When a receiver advertises a
window size of zero, the sender stops sending data and starts the persist timer; this timer is used to avoid
the deadlock when a subsequent window size update from the receiver is lost. When the persist timer
expires, the sender sends a small packet and the receiver responds by sending another acknowledgment
containing the new window size. In addition to the flow control provided by the receiver, the sender
attempts to infer the available network capacity and to avoid overloading the network. The source uses
the losses and the delay to determine the level of congestion. If awnd denotes the receiver window and
cwnd the congestion window set by the sender, the actual window should be:

W = min (cwnd, awnd).

Several algorithms are used to calculate cwnd, including Tahoe and Reno, developed by Jacobson in 1988
and 1990. Tahoe was based on slow-start (SS), congestion avoidance (CA), and fast retransmit (FR); the
sender probes the network for spare capacity and detects congestion based on loss. The slow start means
that the sender starts with a window of two times MSS, init_cwnd = 1; for every packet acknowledged,
the congestion window increases by 1 MSS so that the congestion window effectively doubles for every
RTT. When the congestion window exceeds the threshold, cwnd � ssthresh, the algorithm enters the
congestion avoidance state; in CA state, on each successful acknowledgment cwnd ← cwnd + 1/cwnd
and on each RTT cwnd ← cwnd + 1. The fast retransmit is motivated by the fact that the time out is
too long, so a sender retransmits immediately after three duplicate acknowledgments without waiting

216 CHAPTER 7 Networking Support

for a timeout; two adjustments are then made:

flightsize = min (awnd, cwnd) and ssthresh ← max (flightsize/2, 2)

and the system enters in the slow-start state, cwnd = 1.
The pseudocode describing the Tahoe algorithm is:

for every ACK {
if (W < ssthresh) then W++ (SS)
else W += 1/W (CA)

}
for every loss {

ssthresh = W/2
W = 1

}
The pattern of usage of the Internet has changed. Measurements reported by different sources [108]

show that in 2009 the average bandwidth of an Internet connection was 1.7 Mbps; more than 50% of
the traffic required more than 2 Mbps and could be considered broadband, whereas only about 5% of
the flows required less that 256 Kbps and could be considered narrowband. Recall that the average Web
page size is in the range of 384 KB.

Although the majority of Internet traffic is due to long-lived, bulk data transfer (e.g., video streaming
and audio streaming), the majority of transactions are short lived (e.g., Web requests). So a major
challenge is to ensure some fairness for short-lived transactions.

To overcome the limitations of the slow-start application, strategies have been developed to reduce
the time to download data over the Internet. For example, two browsers, Firefox 3 and Google Chrome,
open up to six TCP connections per domain to increase the parallelism and to boost startup performance
in downloading a Web page. Internet Explorer 8 opens 180 connections. Clearly, these strategies circum-
vent the mechanisms for congestion control and incur a considerable overhead. It is argued that a better
solution is to increase the initial congestion window of TCP, and the arguments presented in [108] are:

• The TCP latency is dominated by the number of RTTs during the slow-start phase4; increasing the
init_cwnd parameter allows the data transfer to be completed with fewer RTTs.

• Given that the average page size is 384 KB, a single TCP connection requires multiple RTTs to
download a single page.

• It ensures fairness between short-lived transactions that are the majority of Internet transfers and the
long-lived transactions that transfer very large amounts of data.

• It allows faster recovery after losses through fast retransmission.

In the experiments reported in [108] the TCP latency was reduced from about 490 msec when
init_cwnd = 3 to about 466 msec for init_cwnd = 16.

4It can be shown that the latency of a transfer completing during the slow start without losses is given by the expression

�logγ

(
L(γ − 1)

init_cwnd
+ 1

)
� × RTT + L

C

with L the transfer size, C the bottleneck-link rate, and γ a constant equal to 1.5 or 2, depending on whether the acknowl-
edgments are delayed; L/init_cwnd � 1.

7.6 Network Resource Management 217

7.6 Network resource management
As mentioned repeatedly, cloud computing is intrinsically dependent on communication; thus, network
resource management is a very important aspect of the management of computer clouds. A critical aspect
of resource management in cloud computing is to guarantee the communication bandwidth required by
an application as specified by a service-level agreement (SLA). The solutions to this problem are based
on the strategies used for some time on the Internet to support the quality-of-service (QoS) requirements
of data streaming.

First, we discuss the stochastic fairness queuing (SFQ) algorithm [240], which takes into account
data packet sizes to ensure that each flow has the opportunity to transmit an equal amount of data.
SFQ is a simpler and less accurate implementation of fair queuing algorithms and thus requires fewer
calculations. The fair queuing (FQ) algorithm discussed in Section 6.9 ensures that a high-data-rate
flow cannot use more than its fair share of the link capacity. Packets are first classified into flows by the
system and then assigned to a queue dedicated to the flow; queues are serviced one packet at a time in
round-robin order, as shown in Figure 7.7. FQ’s objective is max–min fairness; this means that first, it
maximizes the minimum data rate of any of the data flows, then it maximizes the second minimum data
rate, etc. Starvation of expensive flows is avoided, but the throughput is lower.

Next we review a widely used strategy for link sharing, the class-based queuing (CBQ) method
proposed by Sally Floyd and Van Jacobson in 1995 [125]. The objective of CBQ is to support flexible
link sharing for applications that require bandwidth guarantees such as VoIP, video streaming, and audio
streaming. At the same time, CBQ supports some balance between short-lived network flows, such as
Web searches, and long-lived ones, such as video streaming or file transfers.

CBQ aggregates the connections and constructs a hierarchy of classes with different priorities and
throughput allocations. To accomplish link sharing, CBQ uses several functional units: (i) a classifier
that uses the information in the packet header to assign arriving packets to classes; (ii) an estimator of

Flow 1

Flow 5

Flow 4

Flow 3

Flow 2

Flow 8

Flow 7

Flow 6

Port

FIGURE 7.7

Fair queuing (FQ), in which packets are first classified into flows by the system and then assigned to a queue
dedicated to the flow. Queues are serviced one packet at a time in round-robin order, and empty queues are
skipped.

218 CHAPTER 7 Networking Support

Link

A B

RT Web Intr Audio FTPVideo

25% 75%

Priority:1
Alloc: 3%

Priority:2
Alloc: 20%

Priority:3
Alloc: 2%

Priority:1
Alloc: 60%

Priority:2
Alloc: 10%

Priority:3
Alloc: 5%

FIGURE 7.8

CBQ link sharing for two groups: A, of short-lived traffic, and B, of long-lived traffic, allocated 25% and 75%
of the link capacity, respectively. There are three classes with priorities 1, 2, and 3. The RT (real-time) and
the video-streaming classes have priority one and are allocated 3% and 60%, respectively. Web transactions
and audio streaming have priority 2 and are allocated 20% and 10%, respectively, and Intr (interactive
applications) and FTP (file transfer protocols) have priority 3 and are allocated 2% and 5%, respectively, of
the link capacity.

the short-term bandwidth for the class; (iii) a selector, or scheduler, which identifies the highest-priority
class to send next and, if multiple classes have the same priority, to schedule them on a round-robin
basis; and (iv) a delayer to compute the next time when a class that has exceeded its link allocation is
allowed to send.

The classes are organized in a tree-like hierarchy; for example, in Figure 7.8 we see two types of
traffic: group A corresponding to short-lived traffic and group B corresponding to long-lived traffic.
The leaves of the tree are considered Level 1 and in this example include six classes of traffic: real
time, Web, interactive, video streaming, audio streaming, and file transfer. At Level 2 there are the two
classes of traffic, A and B. The root, at Level 3, is the link itself.

The link-sharing policy aims to ensure that if sufficient demand exists, then, after some time intervals,
each interior or leaf class receives its allocated bandwidth. The distribution of the “excess” bandwidth
follows a set of guidelines but does not support mechanisms for congestion avoidance.

A class is overlimit if over a certain recent period it has used more than its bandwidth allocation
(in bytes per second), underlimit if it has used less, and atlimit if it has used exactly its allocation. A
leaf class is satisfied if it is underlimit and has a persistent backlog, and it is unsatisfied otherwise. A
nonleaf class is unsatisfied if it is underlimit and has some descendent class with a persistent backlog.
A precise definition of the term persistent backlog is part of a local policy. A class does not need to be
regulated if it is underlimit or if there are no unsatisfied classes. The class should be regulated if it is
overlimit and if some other class is unsatisfied, and this regulation should continue until the class is no
longer overlimit or until there are no unsatisfied classes (see Figure 7.9 for two examples).

The Linux kernel implements a link-sharing algorithm called hierarchical token buckets (HTB)
inspired by CBQ. In CBQ every class has an assured rate (AR); in addition to the AR every class in
HTB has also a ceil rate (CR) (see Figure 7.10). The main advantage of HTB over CBQ is that it allows
borrowing. If a class C needs a rate above its AR, it tries to borrow from its parent; then the parent

7.7 Interconnection Networks for Computer Clouds 219

A B

1 2 21

A B

1 2 3 21

(b)(a)
FIGURE 7.9

There are two groups, A and B, and three types of traffic, (e.g., Web, real time, and interactive) denoted
1, 2, and 3. (a) Group A and class A.3 traffic are underlimit and unsatisfied. Classes A.1, A.2, and B.1
are overlimit, unsatisfied, and with persistent backlog and have to be regulated. Type A.3 is underlimit and
unsatisfied. Group B is overlimit. (b) Group A is underlimit and unsatisfied. Group B is overlimit and needs
to be regulated. Class A.1 traffic is underlimit. Class A.2 is overlimit and with persistent backlog. Class B.1
traffic is overlimit and with persistent backlog and needs to be regulated.

Link

A B

Web Intr Audioftp

2 Gbps

800/1200 Mbps 1200/1600 Mbps

400/800
Mbps

400/800
Mbps

400/1200
Mbps

800/1600
Mbps

FIGURE 7.10

HTB packet scheduling uses a ceil rate for every node in addition to the allocated rate.

examines its children and, if there are classes running at a rate lower than their AR, the parent can
borrow from them and reallocate it to class C.

7.7 Interconnection networks for computer clouds
This section presents high-speed interconnects for cloud computing. A cloud, sometimes referred to as
a warehouse-scale computer (WSC), has an infrastructure consisting of a very large number of servers
interconnected by high-speed networks. This infrastructure is homogeneous in terms of the hardware
and software running on individual servers.

220 CHAPTER 7 Networking Support

Although processor and memory technology have followed Moore’s law (i.e., that computer proces-
sors double in complexity every two years), the interconnection networks have evolved at a slower pace
and have become a major factor in determining the overall performance and cost of the system. The
speed of the Ethernet has increased from 1 Gbps in 1997 to 100 Gbps in 2010; this increase is slightly
slower than Moore’s law for traffic [251], which would require 1 Tbps Ethernet by 2013.

InfiniBand is another interconnection network used by supercomputers as well as computer clouds.
InfiniBand has a switched fabric topology designed to be scalable. It supports several signaling rates,
and the energy consumption depends on the throughput. Links can be bonded together for additional
throughput; InfiniBand ’s architectural specification defines multiple operational data rates: single data
rate (SDR), double data rate (DDR), quad data rate (QDR), fourteen data rate (FDR), and enhanced data
rated (EDR). The signaling rates are: 2.5 Gbps in each direction per connection for an SDR connection;
5 Gbps for DDR; 10 Gbps for QDR; 14.0625 Gbps for FDR; and 25.78125 Gbps per lane for EDR . SDR,
DDR, and QDR link encoding is 8 B/10 B, every 10 bits sent carry 8 bits of data. Thus single, double,
and quad data rates carry 2, 4, or 8 Gbps useful data, respectively. The effective data transmission rate
is four-fifths of the raw rate.

InfiniBand allows links to be configured for a specified speed and width; the reactivation time of
the link can vary from several nanoseconds to several microseconds. Exadata and Exalogic systems
from Oracle implement the InfiniBand QDR with 40 Gbps (32 Gbps effective) using Sun switches; the
InifiniBand fabric is used to connect compute nodes, compute nodes with storage servers, and Exadata
and Exalogic systems.

InfiniBand has high throughput and low latency and supports QoS guarantees and failover, the
capability to switch to a redundant or standby system. It offers point-to-point bidirectional serial links
intended for the connection of processors with high-speed peripherals, such as disks, as well as multicast
operations.

The networking infrastructure of a cloud must satisfy several requirements, including scalability,
cost, and performance. The network should allow low-latency, high-speed communication and, at the
same time, provide location transparent communication between servers; in other words, every server
should be able to communicate with every other server with similar speed and latency. This requirement
ensures that applications need not be location aware and, at the same time, it reduces the complexity
of the system management.

Important elements of the interconnection fabric are routers and switches. Routers are switches with
a very specific function: joining multiple networks, LANs, and WANs. They receive IP packets, look
inside each packet to identify the source and target IP addresses, then forward these packets as needed
to ensure that data reaches its final destination.

Typically, the networking infrastructure is organized hierarchically. The servers are packed into racks
and interconnected by a top-of-the-rack router; then rack routers are connected to cluster routers, which
in turn are interconnected by a local communication fabric. Finally, interdata center networks connect
multiple WSCs [197]. The switching fabric must have sufficient bidirectional bandwidth for cloud
computing. Clearly, in a hierarchical organization, true location transparency is not feasible and cost
considerations ultimately decide the actual organization and performance of the communication fabric.

The cost of routers and the number of cables interconnecting the routers are major components of
the overall cost of the interconnection network. We should note that the wire density has scaled up at
a slower rate than processor speed, and the wire delay has remained constant over time; thus, better

7.7 Interconnection Networks for Computer Clouds 221

performance and lower costs can only be achieved with innovative router architecture. This motivates
us to take a closer look at the actual design of routers.

The number of ports of a router distinguishes low-radix routers, with a small number of ports, from
high-radix routers, with a large number of ports. High-radix chips divide the bandwidth into a larger
number of narrow ports; low-radix chips divide the bandwidth into a smaller number of wide ports.

The number of intermediate routers in high-radix networks is greatly reduced, and such networks
enjoy a lower latency and reduced power consumption. As a result of the increase in the signaling
rate and in the number of signals, the pin bandwidth of the chips used for switching has increased by
approximately an order of magnitude every five years during the past two decades.

The topology of an interconnection network determines the network diameter5 and its bisection
bandwidth6, as well as the cost and power consumption [193]. First, we introduce informally the Clos
and the flattened butterfly topologies. The name butterfly comes from the pattern of inverted triangles
created by the interconnections, which look like butterfly wings. A butterfly network transfers the data
using the most efficient route, but it is blocking, so it cannot handle a conflict between two packets
attempting to reach the same port at the same time.

A Clos network is a multistage nonblocking network with an odd number of stages (see
Figure 7.11(a)). The network consists of two butterfly networks, and the last stage of the input is
fused with the first stage of the output. In a Clos network all packets overshoot their destination and
then hop back to it. Most of the time the overshoot is not necessary and increases the latency, meaning
that a packet takes twice as many hops as it really needs. In a folded Clos topology the input and output
networks share switch modules Figure 7.11(b). Such networks are sometimes called fat tree; many
commercial high-performance interconnects such as Myrinet, InfiniBand, and Quadrics implement a
fat-tree topology. Some folded Clos networks use low-radix routers (e.g., the Cray XD1 uses radix-24
routers). The latency and the cost of the network can be lowered using high-radix routers.

The Black Widow topology extends the folded Clos topology and has a lower cost and latency. It
adds side links, which permit a statical partitioning of the global bandwidth among peer subtrees [321].
The Black Widow topology is used in Cray computers.

The flattened butterfly topology [192] is similar to the generalized hypercube that was proposed in
the early 1980s, but the wiring complexity is reduced and this topology is able to exploit high-radix
routers. When constructing a flattened butterfly, we start with a conventional butterfly and combine the
switches in each row into a single, higher-radix one; each router is linked to more processors, and this
halves the number of router-to-router connections.

The latency is reduced because data from one processor can reach another processor with fewer
hops, though the physical path may be longer. For example, in Figure 7.12(b) we see a 2-ary 4-fly
butterfly. We combine the four switches S0, S1, S2, and S3 in the first row into a single switch S′

0. The
flattened butterfly adaptively senses congestion and overshoots only when it needs to. On adversarial
traffic patterns, the flattened butterfly has similar performance to that of the folded Clos but provides
over an order of magnitude increase in performance compared to the conventional butterfly.

5The diameter of a network is the average distance between each pair of two nodes. If a network is fully connected, its
diameter is equal to one.
6When a network is partitioned into two networks of the same size, the bisection bandwidth measures the communication
bandwidth between the two.

222 CHAPTER 7 Networking Support

(b)(a)

Output network

Input network

FIGURE 7.11

(a) A five-stage Clos network with radix-2 routers and unidirectional channels. The network is equivalent to
two back-to-back butterfly networks. (b) The corresponding folded-Clos network with bidirectional channels.
The input and output networks share switch modules.

The authors of [193] argue that the cost of the networks in storage area networks (SANs) and computer
clusters can be reduced by a factor of two when high-radix routers (radix-64 or higher) and the flattened
butterfly topology are used. The flattened butterfly does not reduce the number of local cables, (e.g.,
backplane wires from the processors to routers), but it reduces the number of global cables. The cost of
the cables represents as much as 80% of the total network cost (e.g., for a 4 K system the cost savings
of the flattened butterfly exceed 50%).

7.8 Storage area networks
A storage area network (SAN) is a specialized, high-speed network for data-block transfers between
computer systems and storage elements; thus, it is a critical element of a cloud infrastructure (see
Figure 7.13). A SAN consists of a communication infrastructure and a management layer. The Fibre
Channel (FC) is the dominant architecture of SANs.

FC is a layered protocol with several layers, as depicted in Figure 7.14:
A. The lower three layer protocols: FC-0, the physical interface; FC-1, the transmission protocol

responsible for encoding/decoding; and FC-2, the signaling protocol responsible for framing and flow
control.

FC-0 uses laser diodes as the optical source and manages the point-to-point fiber connections. When
the fiber connection is broken, the ports send a series of pulses until the physical connection is reestab-
lished and the necessary handshake procedures are followed.

7.8 Storage Area Networks 223

S0 S3S2S1

(a) (b)

in3

S’0
out0

out5
out4

out7

out3

out11

out8

out6

out13

out12

out10

out2

out14

out15

out1

out9

out0

out5
out4

out7

out3

out11

out8

out6

out13

out12

out10

out2

out14

out15

out1

out9
S’4

S’5

S’6

S’7

in0

in11

in12

in10

in9

in8

in6

in7

in5

in4

in2

in1

in15

in14

in13

in0

in11

in12

in10

in9

in8

in6

in7

in5

in4

in2

in1

in15

in14

in13

in3
S’1

S’2

S’3

FIGURE 7.12

(a) A 2-ary 4-fly butterfly with unidirectional links. (b) The corresponding 2-ary 4-fly flattened butterfly is
obtained by combining the four switches S0, S1, S2, and S3 in the first row of the traditional butterfly into
a single switch S ′

0 and adding connections between switches [192].

FC-1 controls the serial transmission and integrates data with clock information. It ensures encoding
to the maximum length of the code, maintains DC balance, and provides word alignment.

FC-2 provides the transport methods for data transmitted in 4-byte ordered sets containing data
and control characters. It handles the topologies based on the presence or absence of a fabric, the
communication models, the classes of service provided by the fabric and the nodes, sequence and
exchange identifiers, and segmentation and reassembly.

B. Two upper layer protocols: FC-3, the common services layer; and FC-4, the protocol mapping
layer. FC-3 supports multiple ports on a single node or fabric using:

• Hunt groups-sets of associated ports assigned an alias identifier that allows any frames containing
that alias to be routed to any available port within the set.

• Striping to multiply bandwidth, using multiple ports in parallel to transmit a single information unit
across multiple links.

• Multicast and broadcast to deliver a single transmission to multiple destination ports or to all nodes.

To accommodate various application needs, FC supports several classes of service:

224 CHAPTER 7 Networking Support

SAN

Servers

Data Data
Data

Data

Storage

Clients

Local Area Network

FIGURE 7.13

A storage area network interconnects servers to servers, servers to storage devices, and storage devices to
storage devices. Typically it uses fiber optics and the FC protocol.

Physical Interface

Transmission Protocol

Signaling Protocol

Common Services

SCSI IP ATM

FC-0

FC-1

FC-2

FC-3

FC-4

FIGURE 7.14

FC protocol layers.

Class 1. Rarely used blocking connection-oriented service. Acknowledgments ensure that the frames
are received in the same order in which they are sent and reserve full bandwidth for the connection
between the two devices.

Class 2. Acknowledgments ensure that the frames are received. Allows the fabric to multiplex several
messages on a frame-by-frame basis. Because frames can take different routes, it does not guarantee
in-order delivery; it relies on upper layer protocols to take care of frame sequence.

7.8 Storage Area Networks 225

Class 3. Datagram connection; no acknowledgments.
Class 4. Supports connection-oriented service. Virtual circuits (VCs) established between ports

guarantee in-order delivery and acknowledgment of delivered frames, but the fabric is responsible for
multiplexing frames of different VCs. Guaranteed QoS, including bandwidth and latency; intended for
multimedia applications.

Class 5. Supports isochronous service for applications requiring immediate delivery without
buffering.

Class 6. Supports dedicated connections for a reliable multicast.
Class 7. Similar to Class 2 but used for the control and management of the fabric. A connectionless

service with notification of nondelivery.
Although each device connected to a LAN has a unique physical address, also called a Media Access

Control (MAC) address, each FC device has a unique ID called the World Wide Name (WWN), a 64-bit
address. Each port in the switched fabric has its own unique 24-bit address consisting of the domain
(bits 23–16), the area (bits 15–08), and the port physical address (bits 07–00).

The switch of a switched fabric environment assigns dynamically and maintains the port addresses.
When a device with a WWN logs into the switch on a port, the switch assigns the port address to that
port and maintains the correlation between that port address and the WWN address of the device using
the Name Server, a component of the fabric operating system, which runs inside the switch.

The format of an FC frame is shown in Figure 7.15. Zoning permits finer segmentation of the switched
fabric. Only the members of the same zone can communicate within that zone. It can be used to separate
different environments (e.g., a Microsoft Windows NT from a UNIX environment).

Several other protocols are used for SANs. Fibre Channel over IP (FCIP) allows transmission of Fibre
Channel information through the IP network using tunneling. Tunneling is a technique for network pro-
tocols to encapsulate a different payload protocol. It allows a network protocol to carry a payload over
an incompatible delivery network or to provide a secure path through an untrusted network. Tunneling
allows a protocol that a firewall would normally block to cross it wrapped inside a protocol that the
firewall does not block. For example, an HTTP tunnel can be used for communication from network
locations with restricted connectivity (e.g., behind NATs, firewalls, or proxy servers) and most often
with applications that lack native support for communication in such conditions of restricted connec-
tivity. Restricted connectivity is a commonly used method to lock down a network to secure it against
internal and external threats.

Internet Fibre Channel Protocol (iFCP) is a gateway-to-gateway protocol that supports communica-
tion among FC storage devices in a SAN or on the Internet using TCP/IP. iFCP replaces the lower-layer

Word 0
4 Bytes

SOF
(Start of
Frame)

Word 1
3 Bytes

Destination
Port

Address

Word 2
3 Bytes
Source

Port
Address

Words 3-6
18 Bytes
Control

Information

(0-2112 Bytes)
Payload CRC EOF

(End of
Frame)

FIGURE 7.15

The format of an FC frame. The payload can be, at most, 2112 bytes. Larger data units are carried by multiple
frames. CRC – Cyclic Redundancy Check.

226 CHAPTER 7 Networking Support

Fibre Channel transport with TCP/IP and Gigabit Ethernet. With iFCP, Fibre Channel devices connect
to an iFCP gateway or switch, and each Fibre Channel session is terminated at the local gateway and
converted to a TCP/IP session via iFCP.

7.9 Content-delivery networks
Computer clouds support not only network-centric computing, but also network-centric content. For
example, we shall see in Chapter 8 that in 2013 Internet video is expected to generate over 18 exabytes
of data per month. The vast amount of data stored on the cloud has to be delivered efficiently to a large
user population.

Content-delivery networks (CDNs) offer fast and reliable content delivery and reduce the communica-
tion bandwidth by caching and replication. A CDN receives the content from an origin server, then repli-
cates it to its edge cache servers. The content is delivered to an end user from the “closest” edge server.

CDNs are designed to support scalability, increase reliability and performance, and provide better
security. The volume of transactions and data transported by the Internet increases dramatically every
year. Additional resources are necessary to accommodate the additional load placed on communication
and storage systems and to improve the end-user experience. CDNs place additional resources provi-
sioned to absorb the traffic caused by flash crowds7 and, in general, to provide capacity on demand.

The additional resources are placed strategically throughout the Internet to ensure scalability. The
resources provided by a CDN are replicated, and when one of the replicas fails, the content is available
from another one. The replicas are “close” to the consumers of the content, and this placement reduces
the startup time and the communication bandwidth. A CDN uses two types of server: the origin server
updated by the content provider and replica servers that cache the content and serve as an authoritative
reference for client requests. Security is a critical aspect of the services provided by a CDN; the replicated
content should be protected from the increased risk of cyber fraud and unauthorized access.

A CDN can deliver static content and/or live or on-demand streaming media. Static content refers
to media that can be maintained using traditional caching technologies because changes are infrequent.
Examples of static content are HTML pages, images, documents, software patches, and audio and/or
video files. Live media refers to live events during which the content is delivered in real time from the
encoder to the media server. On-demand delivery of audio and/or video streams, movie files, and music
clips provided to end users is content-encoded and then stored on media servers. Virtually all CDN
providers support static content delivery, whereas live or on-demand streaming media are considerably
more challenging.

The first CDN was set up by Akamai, a company evolved from a Massachusetts Institute of Tech-
nology (MIT) project to optimize network traffic. Akamai has placed some 20,000 servers in 1,000
networks in 71 countries since its inception. In 2009 it controlled some 85% of the market [285].

Akamai mirrors the contents of clients on multiple systems placed strategically through the Internet.
Though the domain name (but not the subdomain) is the same, the IP address of the resource requested
by a user points to an Akamai server rather than the customer’s server. Then the Akamai server is
automatically picked, depending on the type of content and the network location of the end user.

7The term flash crowds refers to an event that disrupts the life of a very significant segment of the population, such as an
earthquake in a very populated area, and causes Internet traffic to increase dramatically.

7.9 Content-Delivery Networks 227

There are several other active commercial CDNs, including EdgeStream, which provides video
streaming, and Limelight Networks, which provides distributed on-demand and live delivery of video,
music, and games. There are several academic CDNs: Coral is a freely available network designed to
mirror Web content, hosted on PlanetLab; Globule is an open-source collaborative CDN developed at
the Vrije Universiteit in Amsterdam.

The communication infrastructure among different CDN components uses a fair number of protocols,
including Network Element Control Protocol (NECP), Web Cache Coordination Protocol (WCCP),
SOCKS, Cache Array Routing Protocol (CARP), Internet Cache Protocol (ICP), Hypertext Caching
Protocol (HTCP), and Cache Digest, described succinctly in [285]. For example, caches exchange ICP
queries and replies to locate the best sites from which to retrieve an object; HTCP is used to discover
HTTP caches, cache data, or manage sets of HTTP caches and monitor cache activity.

There are two strategies for CDN organization. In the so-called overlay, the network core does not
play an active role in content delivery. On the other hand, the network approach requires the routers
and the switches to use dedicated software to identify specific application types and to forward user
requests based on predefined policies.

The first strategy is based exclusively on content replication on multiple caches and redirection based
on proximity to the end user. In the second approach, the network core elements redirect content requests
to local caches or redirect data center incoming traffic to servers optimized for specific content type
access. Some CDNs, including Akamai, use both strategies.

Important design and policy decisions for a CDN are:

• The placement of the edge servers.
• The content selection and delivery.
• The content management.
• The request routing policies.

The placement problem is often solved with suboptimal heuristics using workload patterns and
network topology as inputs. The simplest, but a costly, approach for content selection and delivery is
full-site replication, suitable for static content. The edge servers replicate the entire content of the origin
server. On the other hand, partial-site selection and delivery retrieve the base HTML page from the
origin server and the objects referenced by this page from the edge caches. The objects can be replicated
based on their popularity or on some heuristics.

Content management depends on the caching techniques, cache maintenance, and cache update
policies. CDNs use several strategies to manage the consistency of content at replicas: periodic updates,
updates triggered by the content change, and on-demand updates.

The request routing in a CDN directs users to the closest edge server that can best serve the request;
metrics such as network proximity, client perceived latency, distance, and replica server load are taken
into account in routing a request. Round-robin is a nonadaptive request-routing method that aims to
balance the load; it assumes that all edge servers have similar characteristics and can deliver the content.

Adaptive algorithms perform considerably better but are more complex and require some knowledge
of the current state of the system. The algorithm used by Akamai takes into consideration metrics such
as the load of the edge server, the bandwidth currently available to a replica server, and the reliability
of the client’s connection to the edge servers.

228 CHAPTER 7 Networking Support

CDN routing can exploit an organization in which several edge servers are connected to a service
node that’s aware of the load and the information about each edge server connected to it and attempts
to implement a global load-balancing policy. An alternative is DNS-based routing, in which a domain
name has multiple IP addresses associated with it and the service provider’s DNS server returns the IP
addresses of the edge servers holding the replica of the requested object; then the client’s DNS server
chooses one of them.

Another alternative is HTTP redirection; in this case a Web server includes in the HTTP header of
a response to a client the address of another edge server. Finally, IP anycasting requires that the same
IP address is assigned to several hosts, and the routing table of a router contains the address of the host
closest to it.

The critical metrics of CDN performance are:

• Cache hit ratio, which is the ratio of the number of cached objects versus total number of objects
requested.

• Reserved bandwidth for the origin server.
• Latency, which is based on the perceived response time by the end users.
• Edge server utilization.
• Reliability, which is based on packet-loss measurements.

CDNs will face considerable challenges in the future due to increased appeal of data streaming and to
the proliferation of mobile devices such as smartphones and tablets. On-demand video streaming requires
enormous bandwidth and storage space as well as powerful servers. CDNs for mobile networks must
be able to dynamically reconfigure the system in response to spatial and temporal demand variations.

The concept of a content service network (CSN) was introduced in [226]. CSNs are overlay networks
built around CDNs to provide an infrastructure service for processing and transcoding.

7.10 Overlay networks and small-world networks
An overlay network, or virtual network, is a network built on top of a physical network. The nodes of an
overlay network are connected by virtual links that can traverse multiple physical links. Overlay networks
are widely used in many distributed systems such as peer-to-peer systems, content-delivery systems,
and client-server systems; in all these cases the distributed systems communicate through the Internet.

An overlay network can support QoS guarantees for data-streaming applications through improved
routing over the Internet. It can also support routing of messages to destinations not specified by an
IP address; in this case, distributed hash tables can be used to route messages based on their logical
addresses. For example, Akamai is a company that manages an overlay network to provide reliable and
efficient content delivery.

Virtualization is a central concept in cloud computing. We have discussed extensively the virtual-
ization of processors, and it makes sense to consider also the virtualization of the cloud interconnect.
Indeed, communication is a critical function of a cloud, and overlay networks can be used to support
more efficient resource management. In this section we discuss several possible candidates as virtual
cloud interconnects and algorithms to construct such networks. Such networks are modeled as graphs;
we start our discussion with a few concepts from graph theory.

7.10 Overlay Networks and Small-World Networks 229

The topology of a network used to model the interactions in complex biological, social, economic, and
computing systems is described by means of graphs in which vertices represent the entities and the edges
represent their interactions. The number of edges incident upon a vertex is called the degree of the vertex.

Several types of graphs have been investigated, starting with the Erdös-Rény model [53,116,117], in
which the number of vertices is fixed and the edges connecting vertices are created randomly. This model
produces a homogeneous network with an exponential tail, and connectivity follows a Poisson distri-
bution peaked at the average degree k̄ and decaying exponentially for k � k̄. An evolving network, in
which the number of vertices increases linearly and a newly introduced vertex is connected to m existing
vertices according to a preferential attachment rule, is described by Barabási and Albert in [10 – 12,39].

Regular graphs in which a fraction of edges are rewired with a probability p have been proposed
by Watts and Strogatz and are called small-world networks [370]. Networks for which the degree
distribution follows a power law, p(k) ∼ k−γ , are called scale-free networks. The four models are
sometimes referred to as Erdös-Rény (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and Scale-free
(SF) models, respectively [140].

Small-World Networks. Traditionally, the connection topology of a network was assumed to be
either completely regular or completely random. Regular graphs are highly clustered and have large
characteristic path length, whereas random graphs exhibit low clustering and have small characteristic
path length.

The characteristic path length, L , is the number of edges in the shortest path between two vertices
averaged over all pairs of vertices. The clustering coefficient C is defined as follows: If vertex a has
ma neighbors, then a fully connected network of its neighbors could have at most Ea = ma(ma − 1)/2
edges. Call Ca the fraction of the Ea edges that actually exist; C is the average of Ca over all vertices.
Clearly, C measures the degree of clusterings of the network.

In 1998, D. Watts and S. H. Strogatz studied the graphs combining the two desirable features, high
clustering and small path length, and introduced the Watts-Strogatz graphs [370]. They proposed the
following procedure to interpolate between regular and random graphs: Starting from a ring lattice with
n vertices and m edges per node, rewire each edge at random with probability 0 � p � 1; when p = 0
the graph is regular, and when p = 1 the graph is random.

When 0 < p < 1, the structural properties of the graph are quantified by:

1. The characteristic path length, L(p).
2. The clustering coefficient, C(p).

If the condition
n � m � ln (n) � 1 (7.1)

is satisfied, then
p → 0 ⇒ Lregular ≈ n/2m � 1 and Cregular ≈ 3/4, (7.2)

whereas
p → 1 ⇒ Lrandom ≈ ln (n)/ ln (m) and Crandom ≈ m/n � 1. (7.3)

Small-world networks have many vertices with sparse connections but are not in danger of getting
disconnected. Moreover, there is a broad range of the probability p such that L(p) ≈ Lrandom and, at

230 CHAPTER 7 Networking Support

the same time, C(p) � Crandom . The significant drop of L(p) is caused by the introduction of a few
shortcuts that connect vertices that otherwise would be much further apart. For small p, the addition of
a shortcut has a highly nonlinear effect; it affects not only the distance between the pair of vertices it
connects but also the distance between their neighbors. If the shortcut replaces an edge in a clustered
neighborhood, C(p) remains practically unchanged, because it is a linear function of m.

7.11 Scale-free networks
Scale-free networks may prove to be a very useful type of overlay networks for cloud computing.
The degree distribution of scale-free networks follows a power law. We only consider the discrete
case when the probability density function is p(k) = a f (k) with f (k) = k−γ and the constant a is
a = 1/ζ(γ, kmin). Thus,

p(k) = 1

ζ(γ, kmin)
k−γ . (7.4)

In this expression, kmin is the smallest degree of any vertex, and for the applications we discuss in this
chapter kmin = 1; ζ is the Hurvitz zeta function8

ζ(γ, kmin) =
∞∑

n=0

1

(kmin + n)γ
=

∞∑
n=0

1

(1 + n)γ
. (7.5)

Many physical and social systems are interconnected by a scale-free network. Indeed, empirical data
available for power grids, the Web, the citation of scientific papers, or social networks confirm this trend:
The power grid of the Western United States has some 5,000 vertices representing power-generating
stations, and in this case γ ≈ 4. For the World Wide Web the probability that m pages point to one
page is p(k) ≈ k−2.1 [40]. Recent studies indicate that γ ≈ 3 for the citation of scientific papers. The
collaborative graph of movie actors in which links are present if two actors were ever cast in the same
movie follows the power law with γ ≈ 2.3. The larger the network, the closer a power law with γ ≈ 3
approximates the distribution [39].

A scale-free network is nonhomogeneous; the majority of the vertices have a low degree, and only
a few vertices are connected to a large number of edges (see Figure 7.16). On the other hand, an
exponential network is homogeneous since most of the vertices have the same degree. The average
distance d between the N vertices, also referred to as the diameter of the scale-free network, scales as
ln N ; in fact, it has been shown that when kmin > 2, a lower bound on the diameter of a network with
2 < γ < 3 is ln N [88]. A number of studies have shown that scale-free networks have remarkable
properties such as robustness against random failures [40], favorable scaling [10,11], resilience to
congestion [140], tolerance to attacks [352], small diameter [88], and small average path length [39].

The moments of a power-law distribution play an important role in the behavior of a network. It has
been shown that the giant connected component (GCC) of networks with a finite average vertex degree
and divergent variance can only be destroyed if all vertices are removed; thus, such networks are highly
resilient against faulty constituents [249]. These properties make scale-free networks very attractive for

8The Hurvitz zeta function ζ(s, q) = ∑∞
n=0

1
(q+n)s for s, q ∈ C and Re(s) > 1 and Re(q) > 0. The Riemann zeta function

is ζ(s, 1).

7.11 Scale-Free Networks 231

FIGURE 7.16

A scale-free network is nonhomogeneous. The majority of the vertices have a low degree and only a few
vertices are connected to a large number of edges. The majority of the vertices are directly connected to the
vertices with the highest degree.

interconnection networks in many applications, including social systems [256], peer-to-peer systems
[8,318], sensor networks [231], and cloud computing.

As an example, consider the case γ = 2.5 and the minimum vertex degree, xmin = 1. We first
determine the value of the zeta function ζ(γ, xmin) and approximate ζ(2.5, 1) = 1.341; thus, the
distribution function is p(k) = k−2.5/1.341 = 0.745 × (1/k2.5), where k is the degree of each vertex.
The probability of vertices with degree k > 10 is Prob(k > 10) = 1 − Prob(k � 10) = 0.015. This
means that at most 1.5% of the total number of vertices will have more than 10 edges connected to them.
We also see that 92.5% of the vertices have degree 1, 2, or 3. Table 7.2 shows the number of vertices of
degrees 1 to 10 for a very large network, N = 108.

Another important property is that the majority of the vertices of a scale-free network are directly
connected to the vertices with the highest degree. For example, in a network with N = 130 vertices and
m = 215 edges, 60% of the nodes are directly connected to the five vertices with the highest degree,
whereas in a random network fewer than half, 27%, of the nodes have this property [11].

Table 7.2 A power-law distribution with degree γ = 2.5. The probability, p(k), and Nk , the
number of vertices with degree k , for a network with a total number of vertices N = 108.

k p(k) Nk k p(k) Nk

1 0.745 74.5 × 106 6 0.009 0.9 × 106

2 0.131 13.1 × 106 7 0.006 0.6 × 106

3 0.049 4.9 × 106 8 0.004 0.4 × 106

4 0.023 2.3 × 106 9 0.003 0.3 × 106

5 0.013 1.3 × 106 10 0.002 0.2 × 106

232 CHAPTER 7 Networking Support

Thus, the nodes of a scale-free network with a degree larger than a given threshold (e.g., k = 4 in
our example) could assume the role of control nodes, and the remaining 92.5% of the nodes could be
servers; this partition is autonomic. Moreover, most of the server nodes are at distance 1, 2, or 3 from
a control node that could gather more accurate state information from these nodes and with minimal
communication overhead.

We conclude that a scale-free network is an ideal interconnect for a cloud. It is not practical to construct
a scale-free physical interconnect for a cloud, but we can generate instead a virtual interconnect with the
desired topology. We pay a small penalty in terms of latency and possibly bandwidth when the nodes
communicate through the virtual interconnect, but this penalty is likely to become smaller and smaller
as new networking technologies for cloud computing emerge.

An Algorithm for the Construction of Graphs with Power-Law Degree Distribution. Consider an
Erdös-Rényi (ER) graph G E R with N vertices. Vertex i has a unique label from a compact set i ∈ {1, N }.
We want to rewire this graph and produce a new graph GSF in which the degrees of the vertices follow
a power-law distribution. The procedure we discuss consists of the following steps [212]:

1. We assign to each node i a probability:

pi = i−α∑N
j=1 j−α

= i−α

ζN (α)
with 0 < α < 1 and ζN (α) =

N∑
i=1

i−α. (7.6)

2. We select a pair of vertices i and j and create an edge between them with probability

pi j = pi p j = (i j)−α

ζ 2
N (α)

(7.7)

and repeat this process n times.

Then the probability that a given pair of vertices i and j is not connected by an edge hi j is

pNC
i j = (1 − pi j)

n ≈ e−2npi j (7.8)

and the probability that they are connected is

pC
i j =

(
1 − pNC

i j

)
= 1 − e−2npi j . (7.9)

Call ki the degree of vertex i ; then the moment-generating function of ki is

gi (t) =
∏
j �=i

[
pNC

i j + tpC
i j

]
. (7.10)

The average degree of vertex i is

k̄i = t
d

dt
gi (t)|t=1 =

∑
j �=i

pC
i j . (7.11)

7.11 Scale-Free Networks 233

Thus,

k̄i =
∑
j �=i

(1 − e−2npi j) =
∑
j �=i

(
1 − e

−2n (i j)−α

ζ2
N (α)

)
≈
∑
j �=i

2n
(i j)−α

ζ 2
N (α)

= 2n

ζ 2
N (α)

∑
j �=i

(i j)−α. (7.12)

This expression can be transformed as

k̄i = 2n

ζ 2
N (α)

∑
j �=i

(i j)−α = 2ni−α
∑

j �=i j−α

ζ 2
N (α)

= 2ni−α
(
ζN (α) − i−α

)
ζ 2

N (α)
. (7.13)

The moment-generating function of ki can be written as

gi (t) =
∏
j �=i

[
pNC

i j + tpC
i j

]
= e(1−t)k̄i =

∏
j �=i

e−(1−t)pC
i j

≈
∏
j �=i

[1 − (1 − t)pC
i j = e(1−t)

∑
j �=i pC

i j = e(1−t)k̄i . (7.14)

We conclude that the probability that ki = k is given by

pd,i (k) = 1

k!
dk

dtk
gi (t)|t=0 ≈ k̄i

k!e−k̄i . (7.15)

When N → ∞ then ζN (α) = ∑N
i=1 i−α converges to the Riemann zeta function ζ(α) for α > 1

and diverges as N 1−α

1−α
if 0 < α < 1. For 0 < α < 1 Eq. (7.6) becomes

pi = i−α

ζN (α)
= 1 − α

N 1−α
i−α. (7.16)

When N → ∞, 0 < α < 1, and the average degree of the vertices is 2m, then the degree of vertex i is

k = pi × m N = 2m N
1 − α

N 1−α
i−α = 2m(1 − α)

(
i

N

)−α

. (7.17)

Indeed, the total number of edges in the graph is m N and the graph has a power-law distribution. Then

i = N

(
k

2m(1 − α)

)− 1
α

. (7.18)

From this expression we see that there is a one-to-many correspondence between the unique label of
the node i in the G E R graph and the degree k of the vertices in the GSF graph. This reflects the fact
that multiple vertices may have the same degree k. The number of vertices of degree k is

n(k) = N

(
k

2m(1 − α)

)− 1
α − N

(
k − 1

2m(1 − α)

)− 1
α

= N

(
k − 1

2m(1 − α)

)− 1
α

((
1 + 1

k

)− 1
α − 1

)
. (7.19)

234 CHAPTER 7 Networking Support

We denote γ = 1 + 1
α

and observe that

(
1 + 1

k

)− 1
α = 1 +

(
− 1

α

)(
1

k

)− 1
α + 1

2

(
− 1

α

)(
− 1

α
− 1

)(
1

k

)− 1
α
−1

+ · · · . (7.20)

We see that

n(k) = N

(
(k − 1)(γ − 1)

2m(γ − 2)

)−γ+1
(

(1 − γ)

(
1

k

)−γ+1

− γ (1 − γ)

2

(
1

k

)−γ

+ · · ·
)

. (7.21)

We conclude that to reach the value predicted by the theoretical model for the number of vertices of
degree k, the number of iterations is a function of N , of the average degree 2m, and of γ , the degree of
the power law. Next we discuss an algorithm for constructing scale-free networks using biased random
walks.

Biased Random Walks. A strategy used successfully to locate systems satisfying a set of conditions
in applications such as peer-to-peer systems is based on biased random walks [33]. Random walks are
reported to be more efficient in searching for nodes with desirable properties than other methods, such as
flooding [135].

Unfortunately, the application of random walks in a large network with an irregular topology is
unfeasible because a central authority could not maintain accurate information about a dynamic set of
members. A solution is to exploit the fact that sampling with a given probability distribution can be
simulated by a discrete-time Markov chain. Indeed, consider an irreducible Markov chain with states
(i, j) ∈ {0, 1, . . . , S}, and let P = [pi j] denote its probability transition matrix, where

pi j = Prob[X(t + 1) = j |X(t) = i], (7.22)

with X(t) the state at time t . Let π = (π0, π1, . . . , πS) be a probability distribution with nonzero
probability for every state, πi > 0, 0 � i � S. The transition matrix P is chosen so that π is its unique
stationary distribution; thus, the reversibility condition π = π P holds. When g(·) is a function defined
on the states of the Markov chain and we want to estimate

E =
S∑

i=0

g(i)πi , (7.23)

we can simulate the Markov chain at times t = 1, 2, . . . , N , and the quantity

Ê =
N∑

i=1

f (X(t))

N
(7.24)

is a good estimate of E – more precisely, Ê �→ E when N �→ ∞. Hastings [160] generalizes the
sampling method of Metropolis [243] to construct the transition matrix given the distribution π . He
starts by imposing the reversibility condition πi pi j = π j p ji . If Q = [qi j] is the transition matrix of an
arbitrary Markov chain on the states {0, 1, . . . , S}, it is assumed that

pi j = qi jαi j if i �= j and pii = 1 −
∑
j �=i

pi j . (7.25)

7.11 Scale-Free Networks 235

Two versions of sampling are discussed in [160]: that of Metropolis and one proposed by Baker[36].
The quantities αi j are, respectively,

αM
i j =

{
1 if

π j
πi

� 1
π j
πi

if
π j
πi

< 1
and αB

i j = π j

πi + π j
. (7.26)

For example, consider a Poisson distribution πi = λi e−λ/i !. We choose qi j = 1/2 if j = i − 1, i �= 0
or j = i + 1, i �= 0 and q00 = q01 = 1/2. Then, using Baker’s approach, we have

pi j =
{

λ/(λ + i + 1) if j = i + 1, i �= 0
i/(i + λ) if j = i − 1, i �= 0

(7.27)

and p00 = 1/2, and p01 = λe−λ/(1 + λe−λ).
The algorithm to construct scale-free overlay topologies with an adjustable exponent presented in

[319] adopts the equilibrium model discussed in [140]. The algorithm is based on random walks in a
connected overlay network G(V , E), viewed as a Markov chain with state space V and a stationary
distribution with a random walk bias configured according to a Metropolis–Hastings chain [160]. In
this case

pi = i−α, with 1 � i � N , α ∈ [0, 1) (7.28)

and add an edge between two vertices a and b with probability

pa

/ N∑
i=1

pi × pb

/ N∑
i=1

pi (7.29)

if none exists; they repeat the process until m N edges are created and the mean degree is 2m. Then the
degree distribution is

p(k) ∼ k−γ , with γ = (1 + α)/α. (7.30)

The elements of the transition matrix P = [pi j] are

pi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ki

min

{(
1
j

) 1
γ−1 ki

k j
, 1

}
(i, j) ∈ E

1 − 1
ki

∑
(l,i)∈E cil i = j

0 (i, j) /∈ E

(7.31)

with ki the degree of vertex i . An upper bound for the number of random walk steps can be determined
from a lower bound for the second smallest eigenvalue of the transition matrix, a nontrivial problem.

A distributed rewiring scheme for constructing a scale-free overlay topology with an adjustable
exponent is presented in [319]. An alternative method of creating the scale-free overlay network could
be based on the gossip-based peer sampling discussed in [181]. The distributed algorithm for constructing
a scale-free network in [319] is based on the method of constructing a random graph with a power-law
distribution sketched in [140,212].

236 CHAPTER 7 Networking Support

Estimation of the Degree of a Power-Law Network. The question we address next is how to estimate
the degree distribution of any scheme for the construction of a power-law network [43]. The estimation
of the degree distribution from empirical data is analyzed in [86]. According to this study, a good
approximation for γ for a discrete power-law distribution for a network with P vertices and kmin = 1 is

γ̂ ≈ 1 + P

[
P∑

i=1

ln
ki

kmin − 1/2

]−1

= 1 + P∑P
i=1 2ki

. (7.32)

Several measures exist for the similarity and dissimilarity of two probability density functions of
discrete random variables, including the trace distance, fidelity, mutual information, and relative entropy
[92,198]. The trace distance (also called Kolmogorov or L1 distance) of two probability density func-
tions, pX (x) and pY (y), and their fidelity are defined as

D(pX (x), pY (x)) = 1

2

∑
x

|pX (x) − pY (x)| (7.33)

and
F(pX (x), pY (x)) =

∑
x

√
pX (x)pY (x). (7.34)

The trace distance is a metric: It is easy to prove nonnegativity, symmetry, the identity of indis-
cernibles, and the triangle inequality. On the other hand, the fidelity is not a metric, since it fails to
satisfy the identity of indiscernibles,

F(pX (x), pX (x)) =
∑

x

√
pX (x)pX (x) = 1 �= 0, (7.35)

respectively. Determining either the L1 distance between the distribution calculated based on Eq. (7.4) or
the one produced by the algorithm discussed earlier requires information about the degree of all vertices.
From Table 7.2 we see that the degree-one vertices represent a very large fraction of the vertices of a
power-law network and may provide a reasonable approximation of the actual degree distribution.

7.12 Epidemic algorithms
Epidemic algorithms mimic the transmission of infectious diseases and are often used in distributed
systems to accomplish tasks such as:

• Disseminating information (e.g., topology information).
• Compute aggregates (e.g., arrange the nodes in a gossip overlay into a list sorted by some attributes

in logarithmic time).
• Manage data replication in a distributed system [149,180,181].

The game of life is a very popular epidemic algorithm invented by John Conway [46].
Several classes of epidemic algorithm exist; the concepts used to classify these algorithms as sus-

ceptible, infective, or recovered refer to the state of the individual in the population subject to infectious
disease and, by extension, to the recipient of information in a distributed system:

7.12 Epidemic Algorithms 237

• Susceptible. The individual is healthy but can get infected; the system does not know the specific
information but can get it.

• Infective. The individual is infected and able to infect others; the system knows the specific infor-
mation and uses the rules to disseminate it.

• Recovered. The individual is infected but does not infect others; the system knows the specific
information and does not disseminate it.

7.12.1 Susceptible-Infective (SI)
The SI algorithms apply when the entire population is susceptible to be infected. Once an individual
becomes infected, it remains in that state until the entire population is infected. If I (t) is the number of
individuals infected, S(t) is the number of individuals susceptible to be infected, and R(t) the number
of those infected and then recovered at time t , and if all individuals have an equal probability β of
contracting the disease, then

I (0)

2[1 − I (0)] � I (t) � I (0)

1 − I (0)
e−βt (7.36)

and
1

2

(
1

S(0) − 1

)
e−βt � S(t) �

(
1

S(0) − 1

)
e−βt (7.37)

when we assume that I (t) and S(t) are continuous variables rather than natural numbers.

7.12.2 Susceptible-Infectious-Recover (SIR)
SIR algorithms are based on the model developed by Kermack and McKendrik in 1927 [189]. The
model assumes the following transition from one state to another: S �→ I �→ R. It also assumes that
1/γ is the average infectious period and that the size of the population is fixed:

S(t) + I (t) + R(t) = N . (7.38)

The dynamics of the model are captured by the following equations:

d S(t)

dt
= −βS(t)I (t),

d I (t)

dt
= βS(t)I (t) − γ I (t), and

d R(t)

dt
= γ I (t). (7.39)

7.12.3 Susceptible-Infective-Susceptible (SIS)
SIS algorithms [57] are particular cases of SIR models in which individuals recover from the disease
without immunity. If p = R(r)/I (r), then the number of newly infected grows until (1 − p)/2 are
infected and then decreases exponentially to (1 − p) according to the expression

I (r) = 1 − p

1 +
(

(1−p)N
I (0)

− 1
) × N . (7.40)

238 CHAPTER 7 Networking Support

Recall that the m-th moment of the power-law distribution of a discrete random variable X ,
PX (x = k) = k−γ , is

E
[
Xm] =

∞∑
k=1

km PX (x = k) =
∞∑

k=1

kmk−γ =
∞∑

k=1

1

kγ−m
. (7.41)

For power-law networks, the epidemic threshold λ for the Susceptible–Infectious–Recovered (SIR)
and Susceptible–Infectious–Susceptible (SIS) epidemic models can be expressed as [112]

λ = E
[
X
]

E
[
X2
] . (7.42)

The epidemic threshold is defined as the minimum ratio of infected nodes to the cured nodes per time
such that it still allows the epidemics to continue without outside infections. It follows that λ �→ 0 if
γ ∈ (2, 3); in other words, such networks become infinitely susceptible to epidemic algorithms. This
property is very important for dissemination of control information in such networks.

7.13 Further reading
“A Brief History of the Internet,” written by Barry Leiner, Vinton Cerf, David Clark, Robert Kahn,
Leonard Kleinrock, Daniel Lynch, Jon Postel, Larry Roberts, and Stephen Wolff, can be acce-
ssed at http://www.internetsociety.org/internet/what-internet/history-
internet/brief-history-internet.

The widely used text of Kurose and Ross [201] is an excellent introduction to basic networking
concepts. The book by Bertsekas and Gallagher [50] gives insights into the performance evaluation of
computer networks. The classic texts on queuing theory of Kleinrock [195] are required reading for
those interested in network analysis.

Moore’s law for traffic is discussed in [251]. The class-based queuing algorithm was introduced by
Floyd and Van Jacobson in [125]. The Black Widow topology for system interconnects is analyzed in
[321]. An extensive treatment of storage area networks can be found in [347].

Erdös-Rény random graphs are analyzed in [53,116]. Scale-free networks and their applications are
described by Barabási and Albert by [10 – 12,39]. Small-world networks were introduced by Watts and
Strogatz in [370]. Epidemic algorithms and their applications are presented in [149,180,181]. Additional
references for the topics covered in this chapter are [204,232,248,257].

7.14 History notes
The Internet is a global network based on the Internet Protocol Suite (TCP/IP); its origins can be traced
back to 1965, when Ivan Sutherland, the head of the Information Processing Technology Office (IPTO)
at the Advanced Research Projects Agency (ARPA), encouraged Lawrence Roberts, who had worked
previously at MIT’s Lincoln Laboratories, to become the chief scientist at ISTO Technologies and to
initiate a networking project based on packet switching rather than circuit switching.

7.15 Exercises and Problems 239

In the early 1960s Leonard Kleinrock at the University of California at Los Angeles (UCLA) devel-
oped the theoretical foundations of packet networks and, in the early 1970s, for hierarchical routing in
packet-switching networks. Kleinrock published the first paper on packet-switching theory in 1961 and
the first book on the subject in 1964.

In August 1968 DARPA released a request for quotation (RFQ) for the development of packet
switches called interface message processors (IMPs). A group from Bolt Beranek and Newman (BBN)
won the contract. Several researchers and their teams including Robert Kahn from BBN, Lawrence
Roberts from DARPA, Howard Frank from Network Analysis Corporation, and Leonard Kleinrock
from UCLA, played a major role in the overall ARPANET architectural design. The idea of open-
architecture networking was first introduced by Kahn in 1972, and his collaboration with Vint Cerf
from Stanford led to the design of TCP/IP. Three groups, one at Stanford, one at BBN, and one at
UCLA, won the DARPA contract to implement TCP/IP.

In 1969 BBN installed the first IMP at UCLA. The first two nodes the ARPANET interconnected
were the Network Measurement Center at UCLA’s School of Engineering and Applied Science and
SRI International in Menlo Park, California. Two more nodes were added at UC Santa Barbara and the
University of Utah. By the end of 1971 there were 15 sites interconnected by ARPANET.

Ethernet technology, developed by Bob Metcalfe at Xerox PARC in 1973, and other local area
network technologies, such as token-passing rings, allowed the personal computers and workstations
to be connected to the Internet in the 1980s. As the number of Internet hosts increased, it was no longer
feasible to have a single table of all hosts and their addresses. The Domain Name System (DNS) was
invented by Paul Mockapetris of USC/ISI. The DNS permitted a scalable distributed mechanism for
resolving hierarchical host names into an Internet address.

UC Berkeley, with support from DARPA, rewrote the TCP/IP code developed at BBN and incorpo-
rated it into the Unix BSD system. In 1985 Dennis Jennings started the NSFNET program at NSF to
support the general research and academic communities.

7.15 Exercises and problems
Problem 1. Four ground rules for open-architecture principles are cited in “A Brief History of the

Internet.” Read the paper and analyze the implication of each one of these rules.

Problem 2. The paper in Problem 1 also lists several key issues for the design of a network:

• Algorithms to prevent lost packets from permanently disabling communications and
enabling them to be successfully retransmitted from the source.

• Providing for host-to-host “pipelining" so that multiple packets can be en route from
source to destination at the discretion of the participating hosts, if the intermediate
networks allow.

• The need for end-to-end checksums, reassembly of packets from fragments, and detec-
tion of duplicates, if any.

• The need for global addressing.
• Techniques for host-to-host flow control.

Discuss how these issues were addressed by the TCP/IP network architecture.

240 CHAPTER 7 Networking Support

Problem 3. Analyze the challenges of a transition to IPv6. What, in your view, will be the effect of
this transition on cloud computing?

Problem 4. Discuss the algorithms used to compute TCP window size.

Problem 5. Creating a virtual machine (VM) reduces ultimately to copying a file. Therefore, the
explosion in the number of VMs cannot be prevented (see Section 9.7). Because each VM
needs its own IP address, virtualization could drastically lead to an exhaustion of the IPv4
address space. Analyze the solution to this potential problem that was adopted by the IaaS
cloud service delivery model.

Problem 6. Read the paper describing the stochastic fair-queuing algorithm [125]. Analyze the sim-
ilarities and dissimilarities of this algorithm and the start-time fair queuing discussed in
Section 6.10.

Problem 7. Small-world networks were introduced by D. Watts and S. H. Strogatz. These networks
have two desirable features: high clustering and small path length. Read [370] and design
an algorithm to construct a small-world network.

Problem 8. The properties of scale-free networks are discussed in [10 – 12,39]. Discuss the important
features of systems interconnected by scale-free networks as discussed in these papers.

Problem 9. Discuss the three models for the propagation of an infectious disease in a finite population:
SI, SIR, and SIS. Justify the formulas describing the dynamics of the system for each model.

8
CHAPTER

Storage Systems

A cloud provides the vast amounts of storage and computing cycles demanded by many applications.
The network-centric content model allows a user to access data stored on a cloud from any device con-
nected to the Internet. Mobile devices with limited power reserves and local storage take advantage of
cloud environments to store audio and video files. Clouds provide an ideal environment for multimedia
content delivery.

A variety of sources feed a continuous stream of data to cloud applications. An ever-increasing
number of cloud-based services collect detailed data about their services and information about the
users of these services. Then the service providers use the clouds to analyze that data.

Storage and processing on the cloud are intimately tied to one another; indeed, sophisticated strategies
to reduce the access time and to support real-time multimedia access are necessary to satisfy the
requirements of content delivery. On the other hand, most cloud applications process very large amounts
of data; effective data replication and storage management strategies are critical to the computations
performed on the cloud.

A new concept, “big data,” reflects the fact that many applications use data sets so large that they
cannot be stored and processed using local resources. The consensus is that “big data” growth can
be viewed as a three-dimensional phenomenon; it implies an increased volume of data, requires an
increased processing speed to process more data and produce more results, and at the same time it
involves a diversity of data sources and data types.

Applications in many areas of science, including genomics, structural biology, high-energy physics,
astronomy, meteorology, and the study of the environment, carry out complex analysis of data sets,
often of the order of terabytes.1 In 2010, the four main detectors at the Large Hadron Collider (LHC)
produced 13 PB of data; the Sloan Digital Sky Survey (SDSS) collects about 200 GB of data per night.
As a result of this increasing appetite for data, file systems such as Btrfs, XFS, ZFS, exFAT, NTFS, HFS
Plus, and ReFS support disk formats with theoretical volume sizes of several exabytes.

Several figures can help us place in context the amount of data associated with various human activi-
ties. The global data volume at the end of 2009 reached 800 EB, according to www.genevaassocia-
tion.org. Internet video will generate over 18 EB/month in 2013 and global mobile data traffic will
reach 2 EB/month by 2013 according to a report from Cisco Systems (www.cisco.com/en/US/
netsol/ns827/networking_solutions_sub_solution.html).

Our discussion of cloud storage starts with a review of the storage technology in Section 8.1, followed
by an overview of storage models in Section 8.2. Then we follow the evolution of file systems, from
distributed to parallel file systems, then to the file systems capable of handling massive amounts of data.
In Sections 8.3 and 8.4 we discuss distributed file systems, General Parallel File Systems, and the Google

1Terabyte, 1 TB = 1012 bytes; petabyte, 1 PB = 1015 bytes; exabyte, 1 EB = 1018 bytes; zettabyte, 1 ZB = 1021 bytes.

Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00008-7
© 2013 Elsevier Inc. All rights reserved.

241

242 CHAPTER 8 Storage Systems

File System, respectively. A locking service, Chubby, based on the Paxos algorithm, is presented in
Section 8.7, followed by a discussion of transaction-processing systems and NoSQL databases in Section
8.8. The next two sections, Sections 8.9 and 8.10, analyze BigTable and Megastore systems.

8.1 The evolution of storage technology
The technological capacity to store information has grown over time at an accelerated pace [164,178]:

• 1986: 2.6 EB; equivalent to less than one 730 MB CD-ROM of data per computer user.
• 1993: 15.8 EB; equivalent to four CD-ROMs per user.
• 2000: 54.5 EB; equivalent to 12 CD-ROMs per user.
• 2007: 295 EB; equivalent to almost 61 CD-ROMs per user.

Though it pales in comparison with processor technology, the evolution of storage technology is
astounding. A 2003 study [251] shows that during the 1980–2003 period the storage density of hard
disk drives (HDD) increased by four orders of magnitude, from about 0.01 Gb/in2 to about 100 Gb/in2.
During the same period the prices fell by five orders of magnitude, to about 1 cent/Mbyte. HDD densities
are projected to climb to 1,800 Gb/in2 by 2016, up from 744 Gb/in2 in 2011.

The density of Dynamic Random Access Memory (DRAM) increased from about 1 Gb/in2 in 1990
to 100 Gb/in2 in 2003. The cost of DRAM tumbled from about $80/MB to less than $1/MB during the
same period. In 2010 Samsung announced the first monolithic, 4 gigabit, low-power, double-data-rate
(LPDDR2) DRAM using a 30 nm process.

These rapid technological advancements have changed the balance between initial investment in
storage devices and system management costs. Now the cost of storage management is the dominant
element of the total cost of a storage system. This effect favors the centralized storage strategy supported
by a cloud; indeed, a centralized approach can automate some of the storage management functions,
such as replication and backup, and thus reduce substantially the storage management cost.

While the density of storage devices has increased and the cost has decreased dramatically, the
access time has improved only slightly. The performance of I/O subsystems has not kept pace with the
performance of computing engines, and that affects multimedia, scientific and engineering, and other
modern applications that process increasingly large volumes of data.

The storage systems face substantial pressure because the volume of data generated has increased
exponentially during the past few decades; whereas in the 1980s and 1990s data was primarily gen-
erated by humans, nowadays machines generate data at an unprecedented rate. Mobile devices, such
as smart-phones and tablets, record static images, as well as movies and have limited local storage
capacity, so they transfer the data to cloud storage systems. Sensors, surveillance cameras, and digital
medical imaging devices generate data at a high rate and dump it onto storage systems accessible via
the Internet. Online digital libraries, ebooks, and digital media, along with reference data,2 add to the
demand for massive amounts of storage.

As the volume of data increases, new methods and algorithms for data mining that require powerful
computing systems have been developed. Only a concentration of resources could provide the CPU

2The term reference data is used for infrequently accessed data such as archived copies of medical or financial records,
customer account statements, and so on.

8.2 Storage Models, File Systems, and Databases 243

cycles along with the vast storage capacity necessary to perform such intensive computations and
access the very large volume of data.

Although we emphasize the advantages of a concentration of resources, we have to be acutely aware
that a cloud is a large-scale distributed system with a very large number of components that must
work in concert. The management of such a large collection of systems poses significant challenges
and requires novel approaches to systems design. Case in point: Although the early distributed file
systems used custom-designed reliable components, nowadays large-scale systems are built with off-
the-shelf components. The emphasis of the design philosophy has shifted from performance at any
cost to reliability at the lowest possible cost. This shift is evident in the evolution of ideas, from the
early distributed file systems of the 1980s, such as the Network File System (NFS) and the Andrew File
System (AFS), to today’s Google File System (GFS) and the Megastore.

8.2 Storage models, file systems, and databases
A storage model describes the layout of a data structure in physical storage; a data model captures the
most important logical aspects of a data structure in a database. The physical storage can be a local disk,
a removable media, or storage accessible via a network.

Two abstract models of storage are commonly used: cell storage and journal storage. Cell storage
assumes that the storage consists of cells of the same size and that each object fits exactly in one cell. This
model reflects the physical organization of several storage media; the primary memory of a computer
is organized as an array of memory cells, and a secondary storage device (e.g., a disk) is organized in
sectors or blocks read and written as a unit. read/write coherence and before-or-after atomicity
are two highly desirable properties of any storage model and in particular of cell storage (see Figure 8.1).

Journal storage is a fairly elaborate organization for storing composite objects such as records
consisting of multiple fields. Journal storage consists of a manager and cell storage, where the entire

M
A

M
A

Time

A A

write item A to
memory cell M

item A from
memory cell M CurrentPrevious

read/write read/write
Next

Time

read/write coherence: the result of a read
of memory cell M should be the same as the
most recent write to that cell

Before-or-after atomicity: the result of every
read or write is the same as if that read or
write occurred either completely before or
completely after any other read or write.

read

read/write

FIGURE 8.1

Illustration capturing the semantics of read/write coherence and before-or-after atomicity.

244 CHAPTER 8 Storage Systems

Journal
manager

Cell storage

A

ABBA

B

Log

Install A

Write A

FIGURE 8.2

A log contains the entire history of all variables. The log is stored on nonvolatile media of journal storage.
If the system fails after the new value of a variable is stored in the log but before the value is stored in
cell memory, then the value can be recovered from the log. If the system fails while writing the log, the cell
memory is not updated. This guarantees that all actions are all-or-nothing. Two variables, A and B, in the log
and cell storage are shown. A new value of A is written first to the log and then installed on cell memory at
the unique address assigned to A.

history of a variable is maintained, rather than just the current value. The user does not have direct
access to the cell storage; instead the user can request the journal manager to (i) start a new action;
(ii) read the value of a cell; (iii) write the value of a cell; (iv) commit an action; or (v) abort an
action. The journal manager translates user requests to commands sent to the cell storage: (i) read a
cell; (ii) write a cell; (iii) allocate a cell; or (iv) deallocate a cell.

In the context of storage systems, a log contains a history of all variables in cell storage. The infor-
mation about the updates of each data item forms a record appended at the end of the log. A log provides
authoritative information about the outcome of an action involving cell storage; the cell storage can be
reconstructed using the log, which can be easily accessed – we only need a pointer to the last record.

An all-or-nothing action first records the action in a log in journal storage and then installs the
change in the cell storage by overwriting the previous version of a data item (see Figure 8.2). The log is
always kept on nonvolatile storage (e.g., disk) and the considerably larger cell storage resides typically
on nonvolatile memory, but can be held in memory for real-time access or using a write-through cache.

Many cloud applications must support online transaction processing and have to guarantee the cor-
rectness of the transactions. Transactions consist of multiple actions; for example, the transfer of funds
from one account to another requires withdrawing funds from one account and crediting it to another.
The system may fail during or after each one of the actions, and steps to ensure correctness must be
taken. Correctness of a transaction means that the result should be guaranteed to be the same as though
the actions were applied one after another, regardless of the order. More stringent conditions must

8.2 Storage Models, File Systems, and Databases 245

sometimes be observed; for example, banking transactions must be processed in the order in which they
are issued, the so-called external time consistency. To guarantee correctness, a transaction-processing
system supports all-or-nothing atomicity, discussed in Section 2.10.

A file system consists of a collection of directories. Each directory provides information about a
set of files. Today high-performance systems can choose among three classes of file system: network
file systems (NFSs), storage area networks (SANs), and parallel file systems (PFSs). The NFS is very
popular and has been used for some time, but it does not scale well and has reliability problems; an
NFS server could be a single point of failure.

Advances in networking technology allow the separation of storage systems from computational
servers; the two can be connected by a SAN. SANs offer additional flexibility and allow cloud servers
to deal with nondisruptive changes in the storage configuration. Moreover, the storage in a SAN can
be pooled and then allocated based on the needs of the servers; pooling requires additional software
and hardware support and represents another advantage of a centralized storage system. A SAN-based
implementation of a file system can be expensive, since each node must have a Fibre Channel adapter
to connect to the network.

Parallel file systems are scalable, are capable of distributing files across a large number of nodes, and
provide a global naming space. In a parallel data system, several I/O nodes serve data to all computational
nodes and include a metadata server that contains information about the data stored in the I/O nodes.
The interconnection network of a parallel file system could be a SAN.

Most cloud applications do not interact directly with file systems but rather through an application
layer that manages a database. A database is a collection of logically related records. The software
that controls the access to the database is called a database management system (DBMS). The main
functions of a DBMS are to enforce data integrity, manage data access and concurrency control, and
support recovery after a failure.

A DBMS supports a query language, a dedicated programming language used to develop database
applications. Several database models, including the navigational model of the 1960s, the relational
model of the 1970s, the object-oriented model of the 1980s, and the NoSQL model of the first decade
of the 2000s, reflect the limitations of the hardware available at the time and the requirements of the
most popular applications of each period.

Most cloud applications are data intensive and test the limitations of the existing infrastructure. For
example, they demand DBMSs capable of supporting rapid application development and short time to
market. At the same time, cloud applications require low latency, scalability, and high availability and
demand a consistent view of the data.

These requirements cannot be satisfied simultaneously by existing database models; for example,
relational databases are easy to use for application development but do not scale well. As its name
implies, the NoSQL model does not support SQL as a query language and may not guarantee the
atomicity, consistency, isolation, durability (ACID) properties of traditional databases. NoSQL usually
guarantees the eventual consistency for transactions limited to a single data item. The NoSQL model is
useful when the structure of the data does not require a relational model and the amount of data is very
large. Several types of NoSQL database have emerged in the last few years. Based on the way the NoSQL
databases store data, we recognize several types, such as key-value stores, BigTable implementations,
document store databases, and graph databases.

246 CHAPTER 8 Storage Systems

Replication, used to ensure fault tolerance of large-scale systems built with commodity components,
requires mechanisms to guarantee that all replicas are consistent with one another. This is another
example of increased complexity of modern computing and communication systems due to physical
characteristics of components, a topic discussed in Chapter 10. Section 8.7 contains an in-depth analysis
of a service implementing a consensus algorithm to guarantee that replicated objects are consistent.

8.3 Distributed file systems: The precursors
In this section we discuss the first distributed file systems, developed in the 1980s by software companies
and universities. The systems covered are the Network File System developed by Sun Microsystems
in 1984, the Andrew File System developed at Carnegie Mellon University as part of the Andrew
project, and the Sprite Network File System developed by John Osterhout’s group at UC Berkeley as
a component of the Unix-like distributed operating system called Sprite. Other systems developed at
about the same time are Locus [365], Apollo [211], and the Remote File System (RFS) [35]. The main
concerns in the design of these systems were scalability, performance, and security (see Table 8.1.)

In the 1980s many organizations, including research centers, universities, financial institutions, and
design centers, considered networks of workstations to be an ideal environment for their operations.
Diskless workstations were appealing due to reduced hardware costs and because of lower maintenance
and system administration costs. Soon it became obvious that a distributed file system could be very
useful for the management of a large number of workstations. Sun Microsystems, one of the main
promoters of distributed systems based on workstations, proceeded to develop the NFS in the early 1980s.

Network File System (NFS). NFS was the first widely used distributed file system; the development
of this application based on the client-server model was motivated by the need to share a file system
among a number of clients interconnected by a local area network.

Table 8.1 A comparison of several network file systems [250].

File Cache Size and Writing Policy Consistency Cache
System Location Guarantees Validation

NFS Fixed, memory On close or Sequential On open, with server
30 s delay consent

AFS Fixed, disk On close Sequential When modified server
asks client

Sprite Variable, memory 30 s delay Sequential, On open, with server
concurrent consent

Locus Fixed, memory On close Sequential, On open, with server
concurrent consent

Apollo Variable, memory Delayed or Sequential On open, with server
on unlock consent

RFS Fixed, memory Write-through Sequential, On open, with server
concurrent consent

8.3 Distributed File Systems: The Precursors 247

A majority of workstations were running under Unix; thus, many design decisions for the NFS were
influenced by the design philosophy of the Unix File System (UFS). It is not surprising that the NFS
designers aimed to:

• Provide the same semantics as a local UFS to ensure compatibility with existing applications.
• Facilitate easy integration into existing UFS.
• Ensure that the system would be widely used and thus support clients running on different operating

systems.
• Accept a modest performance degradation due to remote access over a network with a bandwidth

of several Mbps.

Before we examine NFS in more detail, we have to analyze three important characteristics of the
Unix File System that enabled the extension from local to remote file management:

• The layered design provides the necessary flexibility for the file system; layering allows separation
of concerns and minimization of the interaction among the modules necessary to implement the
system. The addition of the vnode layer allowed the Unix File System to treat local and remote file
access uniformly.

• The hierarchical design supports scalability of the file system; indeed, it allows grouping of files
into special files called directories and supports multiple levels of directories and collections of
directories and files, the so-called file systems. The hierarchical file structure is reflected by the
file-naming convention.

• The metadata supports a systematic rather than an ad hoc design philosophy of the file system. The
so called inodes contain information about individual files and directories. The inodes are kept on
persistent media, together with the data. Metadata includes the file owner, the access rights, the
creation time or the time of the last modification of the file, the file size, and information about
the structure of the file and the persistent storage device cells where data is stored. Metadata also
supports device independence, a very important objective due to the very rapid pace of storage
technology development.

The logical organization of a file reflects the data model – the view of the data from the perspective
of the application. The physical organization reflects the storage model and describes the manner in
which the file is stored on a given storage medium. The layered design allows UFS to separate concerns
for the physical file structure from the logical one.

Recall that a file is a linear array of cells stored on a persistent storage device. The file pointer
identifies a cell used as a starting point for a read or write operation. This linear array is viewed
by an application as a collection of logical records; the file is stored on a physical device as a set of
physical records, or blocks, of a size dictated by the physical media.

The lower three layers of the UFS hierarchy – the block, the file, and the inode layer – reflect
the physical organization. The block layer allows the system to locate individual blocks on the phys-
ical device; the file layer reflects the organization of blocks into files; and the inode layer provides
the metadata for the objects (files and directories). The upper three layers – the path name, the
absolute path name, and the symbolic path name layer – reflect the logical organization. The file-
name layer mediates between the machine-oriented and the user-oriented views of the file system (see
Figure 8.3).

248 CHAPTER 8 Storage Systems

FIGURE 8.3

The layered design of the Unix File System separates the physical file structure from the logical one. The
lower three layers – block, file, and inode – are related to the physical file structure, while the upper three
layers – path name, absolute path name, and symbolic path name – reflect the logical organization. The
filename layer mediates between the two.

Several control structures maintained by the kernel of the operating system support file handling by
a running process. These structures are maintained in the user area of the process address space and can
only be accessed in kernel mode. To access a file, a process must first establish a connection with the
file system by opening the file. At that time a new entry is added to the file description table, and the
meta-information is brought into another control structure, the open file table.

A path specifies the location of a file or directory in a file system; a relative path specifies this
location relative to the current/working directory of the process, whereas a full path, also called an
absolute path, specifies the location of the file independently of the current directory, typically relative
to the root directory. A local file is uniquely identified by a file descriptor (fd), generally an index in the
open file table.

The Network File System is based on the client-server paradigm. The client runs on the local host
while the server is at the site of the remote file system, and they interact by means of remote procedure
calls (RPCs) (see Figure 8.4). The API interface of the local file system distinguishes file operations
on a local file from the ones on a remote file and, in the latter case, invokes the RPC client. Figure 8.5
shows the API for a Unix File System, with the calls made by the RPC client in response to API calls
issued by a user program for a remote file system as well as some of the actions carried out by the NFS

8.3 Distributed File Systems: The Precursors 249

Vnode Vnode

FIGURE 8.4

The NFS client-server interaction. The vnode layer implements file operation in a uniform manner, regardless
of whether the file is local or remote. An operation targeting a local file is directed to the local file system,
whereas one for a remote file involves NFS. An NSF client packages the relevant information about the target
and the NFS server passes it to the vnode layer on the remote host, which, in turn, directs it to the remote
file system.

server in response to an RPC call. NFS uses a vnode layer to distinguish between operations on local
and remote files, as shown in Figure 8.4.

A remote file is uniquely identified by a file handle (fh) rather than a file descriptor. The file handle
is a 32-byte internal name, a combination of the file system identification, an inode number, and a
generation number. The file handle allows the system to locate the remote file system and the file on
that system; the generation number allows the system to reuse the inode numbers and ensures correct
semantics when multiple clients operate on the same remote file.

Although many RPC calls, such as read, are idempotent,3 communication failures could sometimes
lead to unexpected behavior. Indeed, if the network fails to deliver the response to a read RPC, then
the call can be repeated without any side effects. By contrast, when the network fails to deliver the
response to the rmdir RPC, the second call returns an error code to the user if the call was successful
the first time. If the server fails to execute the first call, the second call returns normally. Note also that
there is no close RPC because this action only makes changes in the process open file structure and
does not affect the remote file.

3An action is idempotent if repeating it several times has the same effect as though the action were executed only once.

250 CHAPTER 8 Storage Systems

Application
API

NFS client
RPC

NFS server

OPEN
(fname,flags,mode)

CLOSE (fh)

LOOKUP(dfh,fname)
READ(fh,offset,count)

CREATE(dfh,fname,mode)

READ(fd,buf,count) READ(fh,offset,count)

Lookup fname
in directory dfh and return

fh (the file handle) and
file attributes or create a

new file
Remove fh from the open file table of
the process

Read data from file fh at
offset and length count

and return it.

WRITE(fd,buf,count)

SEEK(fd,buf,whence)

FSYNCH(fd)

CHMOD(fd, mode)

WRITE(fh,offset,count,buf)
write count bytes of data
to file fh at location given

by offset

Update the file pointer in the open file
table of the process

write all cached data to
persistent storage

RENAME
(fromfname,tofname)

STAT(fname)

MKDIR(dname)
RMDIR(dname)

LINK(fname,linkname)

MOUNT
(fsname,device)

GETATTR(fh)

RENAME(dfh,fromfname,
tofh,tofname)

MKDIR(dfh,dname,attr)
RMDIR(dfh,dname)

LOOKUP(dfh,-fname)
READLINK(fh)
LINK(dfh,fname)

SETATTR(fh,mode)

Write data

Check the pathname
and sender’s IP address
and return the fh of the
export root directory.

LOOKUP(dfh,fname)

Create a link

Create/delete directory

Get metadata

Rename file

Update inode info

FIGURE 8.5

The API of the Unix File System and the corresponding RPC issued by an NFS client to the NFS server. The
actions of the server in response to an RPC issued by the NFS client are too complex to be fully described.
fd stands for file descriptor, fh for file handle, fname for filename, dname for directory name, dfh for the
directory where the file handle can be found, count for the number of bytes to be transferred, buf for the
buffer to transfer the data to/from, and device for the device on which the file system is located fsname
(stands for files system name).

8.3 Distributed File Systems: The Precursors 251

The NFS has undergone significant transformations over the years. It has evolved from Version 2
[314], discussed in this section, to Version 3 [286] in 1994 and then to Version 4 [287] in 2000 (see
Section 8.11).

Andrew File System (AFS). AFS is a distributed file system developed in the late 1980s at Carnegie
Mellon University (CMU) in collaboration with IBM [250]. The designers of the system envisioned
a very large number of workstations interconnected with a relatively small number of servers; it was
anticipated that each individual at CMU would have an Andrew workstation, so the system would
connect up to 10,000 workstations. The set of trusted servers in AFS forms a structure called Vice.
The OS on a workstation, 4.2 BSD Unix, intercepts file system calls and forwards them to a user-level
process called Venus, which caches files from Vice and stores modified copies of files back on the
servers they came from. Reading and writing from/to a file are performed directly on the cached copy
and bypass Venus; only when a file is opened or closed does Venus communicate with Vice.

The emphasis of the AFS design was on performance, security, and simple management of the file
system [170]. To ensure scalability and to reduce response time, the local disks of the workstations are
used as persistent cache. The master copy of a file residing on one of the servers is updated only when
the file is modified. This strategy reduces the load placed on the servers and contributes to better system
performance.

Another major objective of the AFS design was improved security. The communications between
clients and servers are encrypted, and all file operations require secure network connections. When a
user signs into a workstation, the password is used to obtain security tokens from an authentication
server. These tokens are then used every time a file operation requires a secure network connection.

The AFS uses access control lists (ACLs) to allow control sharing of the data. An ACL specifies
the access rights of an individual user or group of users. A set of tools supports ACL management.
Another facet of the effort to reduce user involvement in file management is location transparency. The
files can be accessed from any location and can be moved automatically or at the request of system
administrators without user involvement and/or inconvenience. The relatively small number of servers
drastically reduces the efforts related to system administration because operations, such as backups,
affect only the servers, whereas workstations can be added, removed, or moved from one location to
another without administrative intervention.

Sprite Network File System (SFS). SFS is a component of the Sprite network operating system
[165]. SFS supports non-write-through caching of files on the client as well as the server systems [255].
Processes running on all workstations enjoy the same semantics for file access as they would if they
were run on a single system. This is possible due to a cache consistency mechanism that flushes portions
of the cache and disables caching for shared files opened for read/write operations.

Caching not only hides the network latency, it also reduces server utilization and obviously improves
performance by reducing response time. A file access request made by a client process could be satisfied
at different levels. First, the request is directed to the local cache; if it’s not satisfied there, it is passed
to the local file system of the client. If it cannot be satisfied locally then the request is sent to the remote
server. If the request cannot be satisfied by the remote server’s cache, it is sent to the file system running
on the server.

The design decisions for the Sprite system were influenced by the resources available at a time when a
typical workstation had a 1–2 MIPS processor and 4–14 Mbytes of physical memory. The main-memory

252 CHAPTER 8 Storage Systems

caches allowed diskless workstations to be integrated into the system and enabled the development of
unique caching mechanisms and policies for both clients and servers. The results of a file-intensive
benchmark report [255] show that SFS was 30–35% faster than either NFS or AFS.

The file cache is organized as a collection of 4 KB blocks; a cache block has a virtual address
consisting of a unique file identifier supplied by the server and a block number in the file. Virtual
addressing allows the clients to create new blocks without the need to communicate with the server. File
servers map virtual to physical disk addresses. Note that the page size of the virtual memory in Sprite
is also 4K.

The size of the cache available to an SFS client or a server system changes dynamically as a function
of the needs. This is possible because the Sprite operating system ensures optimal sharing of the physical
memory between file caching by SFS and virtual memory management.

The file system and the virtual memory manage separate sets of physical memory pages and maintain
a time of last access for each block or page, respectively. Virtual memory uses a version of the clock
algorithm [254] to implement a least recently used (LRU) page replacement algorithm, and the file
system implements a strict LRU order, since it knows the time of each read and write operation.
Whenever the file system or the virtual memory management experiences a file cache miss or a page
fault, it compares the age of its oldest cache block or page, respectively, with the age of the oldest one
of the other system; the oldest cache block or page is forced to release the real memory frame.

An important design decision related to the SFS was to delay write-backs; this means that a block
is first written to cache, and the writing to the disk is delayed for a time of the order of tens of seconds.
This strategy speeds up writing and avoids writing when the data is discarded before the time to write
it to the disk. The obvious drawback of this policy is that data can be lost in case of a system failure.
Write-through is the alternative to the delayed write-back; it guarantees reliability because the block
is written to the disk as soon as it is available on the cache, but it increases the time for a write
operation.

Most network file systems guarantee that once a file is closed, the server will have the newest version
on persistent storage. As far as concurrency is concerned, we distinguish sequential write sharing, when
a file cannot be opened simultaneously for reading and writing by several clients, from concurrent write
sharing, when multiple clients can modify the file at the same time. Sprite allows both modes of
concurrency and delegates the cache consistency to the servers. In case of concurrent write sharing,
the client caching for the file is disabled; all reads and writes are carried out through the server.

Table 8.1 presents a comparison of caching, writing strategy, and consistency of NFS, AFS [250],
Sprite [165], Locus [365], Apollo [211], and the Remote File System (RFS) [35].

8.4 General Parallel File System
Parallel I/O implies execution of multiple input/output operations concurrently. Support for parallel
I/O is essential to the performance of many applications [236]. Therefore, once distributed file systems
became ubiquitous, the natural next step in the evolution of the file system was to support parallel access.
Parallel file systems allow multiple clients to read and write concurrently from the same file.

Concurrency control is a critical issue for parallel file systems. Several semantics for handling the
shared access are possible. For example, when the clients share the file pointer, successive reads issued
by multiple clients advance the file pointer; another semantic is to allow each client to have its own

8.4 General Parallel File System 253

SAN

disk
disk

disk
disk

disk

disk

I/O servers

FIGURE 8.6

A GPFS configuration. The disks are interconnected by a SAN and compute servers are distributed in four
LANs, LAN1–LAN4. The I/O nodes/servers are connected to LAN1.

file pointer. Early supercomputers such as the Intel Paragon4 took advantage of parallel file systems to
support applications based on the same program, multiple data (SPMD) paradigm.

The General Parallel File System (GPFS) [317] was developed at IBM in the early 2000s as a
successor to the TigerShark multimedia file system [159]. GPFS is a parallel file system that emulates
closely the behavior of a general-purpose POSIX system running on a single system. GPFS was designed
for optimal performance of large clusters; it can support a file system of up to 4 PB consisting of up to
4, 096 disks of 1 TB each (see Figure 8.6).

4The Paragon series of superconductors launched in 1992 were based on the Touchstone Delta system. Up to 4,000 i860s
Intel microprocessors were connected in a 2D grid. A parallel file system was available for the Paragon.

254 CHAPTER 8 Storage Systems

The maximum file size is (263−1) bytes. A file consists of blocks of equal size, ranging from 16 KB to
1 MB striped across several disks. The system could support not only very large files but also a very large
number of files. The directories use extensible hashing techniques5 to access a file. The system maintains
user data, file metadata such as the time when last modified, and file system metadata such as allocation
maps. Metadata, such as file attributes and data block addresses, is stored in inodes and indirect blocks.

Reliability is a major concern in a system with many physical components. To recover from system
failures, GPFS records all metadata updates in a write-ahead log file. Write-ahead means that updates
are written to persistent storage only after the log records have been written. For example, when a new
file is created, a directory block must be updated and an inode for the file must be created. These records
are transferred from cache to disk after the log records have been written. When the directory block is
written and then the I/O node fails before writing the inode, then the system ends up in an inconsistent
state and the log file allows the system to recreate the inode record.

The log files are maintained by each I/O node for each file system it mounts; thus, any I/O node
is able to initiate recovery on behalf of a failed node. Disk parallelism is used to reduce access time.
Multiple I/O read requests are issued in parallel and data is prefetched in a buffer pool.

Data striping allows concurrent access and improves performance but can have unpleasant side-
effects. Indeed, when a single disk fails, a large number of files are affected. To reduce the impact of
such undesirable events, the system attempts to mask a single disk failure or the failure of the access path
to a disk. The system uses RAID devices with the stripes equal to the block size and dual-attached RAID
controllers. To further improve the fault tolerance of the system, GPFS data files as well as metadata
are replicated on two different physical disks.

Consistency and performance, critical to any distributed file system, are difficult to balance. Support
for concurrent access improves performance but faces serious challenges in maintaining consistency.
In GPFS, consistency and synchronization are ensured by a distributed locking mechanism; a central
lock manager grants lock tokens to local lock managers running in each I/O node. Lock tokens are also
used by the cache management system.

Lock granularity has important implications in the performance of a file system, and GPFS uses
a variety of techniques for various types of data. Byte-range tokens are used for read and write
operations to data files as follows: The first node attempting to write to a file acquires a token
covering the entire file, [0,∞]. This node is allowed to carry out all reads and writes to the file
without any need for permission until a second node attempts to write to the same file. Then the range
of the token given to the first node is restricted. More precisely, if the first node writes sequentially
at offset f p1 and the second one at offset f p2 > f p1, the range of the tokens for the two tokens are
[0, f p2] and [f p2,∞], respectively, and the two nodes can operate concurrently, without the need for
further negotiations. Byte-range tokens are rounded to block boundaries.

Byte-range token negotiations among nodes use the required range and the desired range for the
offset and for the length of the current and future operations, respectively. Data shipping, an alternative
to byte-range locking, allows fine-grained data sharing. In this mode the file blocks are controlled by
the I/O nodes in a round-robin manner. A node forwards a read or write operation to the node
controlling the target block, the only one allowed to access the file.

5A hash function is applied to the name of the file; then the n low-order bits of the hash value give the block number of the
directory where the file information can be found. n is a function of the number of files in the directory. Extensible hashing
is used to add a new directory block.

8.5 Google File System 255

A token manager maintains the state of all tokens; it creates and distributes tokens, collects tokens
once a file is closed, and downgrades or upgrades tokens when additional nodes request access to a file.
Token management protocols attempt to reduce the load placed on the token manager; for example,
when a node wants to revoke a token, it sends messages to all the other nodes holding the token and
forwards the reply to the token manager.

Access to metadata is synchronized. For example, when multiple nodes write to the same file, the
file size and the modification dates are updated using a shared write lock to access an inode. One of the
nodes assumes the role of a metanode, and all updates are channeled through it. The file size and the last
update time are determined by the metanode after merging the individual requests. The same strategy
is used for updates of the indirect blocks. GPFS global data such as access control lists (ACLs), quotas,
and configuration data are updated using the distributed locking mechanism.

GPFS uses disk maps to manage the disk space. The GPFS block size can be as large as 1 MB,
and a typical block size is 256 KB. A block is divided into 32 subblocks to reduce disk fragmentation
for small files; thus, the block map has 32 bits to indicate whether a subblock is free or used. The
system disk map is partitioned into n regions, and each disk map region is stored on a different I/O
node. This strategy reduces conflicts and allows multiple nodes to allocate disk space at the same time.
An allocation manager running on one of the I/O nodes is responsible for actions involving multiple
disk map regions. For example, it updates free space statistics and helps with deallocation by sending
periodic hints of the regions used by individual nodes.

A detailed discussion of system utilities and the lessons learned from the deployment of the file sys-
tem at several installations in 2002 can be found in [317]; the documentation of the GPFS is available
from [177].

8.5 Google File System
The Google File System (GFS) was developed in the late 1990s. It uses thousands of storage systems
built from inexpensive commodity components to provide petabytes of storage to a large user community
with diverse needs [136]. It is not surprising that a main concern of the GFS designers was to ensure
the reliability of a system exposed to hardware failures, system software errors, application errors, and
last but not least, human errors.

The system was designed after a careful analysis of the file characteristics and of the access models.
Some of the most important aspects of this analysis reflected in the GFS design are:

• Scalability and reliability are critical features of the system; they must be considered from the
beginning rather than at some stage of the design.

• The vast majority of files range in size from a few GB to hundreds of TB.
• The most common operation is to append to an existing file; random write operations to a file

are extremely infrequent.
• Sequential read operations are the norm.
• The users process the data in bulk and are less concerned with the response time.
• The consistency model should be relaxed to simplify the system implementation, but without placing

an additional burden on the application developers.

256 CHAPTER 8 Storage Systems

Several design decisions were made as a result of this analysis:

1. Segment a file in large chunks.
2. Implement an atomic file append operation allowing multiple applications operating concurrently

to append to the same file.
3. Build the cluster around a high-bandwidth rather than low-latency interconnection network. Separate

the flow of control from the data flow; schedule the high-bandwidth data flow by pipelining the data
transfer over TCP connections to reduce the response time. Exploit network topology by sending
data to the closest node in the network.

4. Eliminate caching at the client site. Caching increases the overhead for maintaining consistency
among cached copies at multiple client sites and it is not likely to improve performance.

5. Ensure consistency by channeling critical file operations through a master, a component of the
cluster that controls the entire system.

6. Minimize the involvement of the master in file access operations to avoid hot-spot contention and
to ensure scalability.

7. Support efficient checkpointing and fast recovery mechanisms.
8. Support an efficient garbage-collection mechanism.

GFS files are collections of fixed-size segments called chunks; at the time of file creation each chunk
is assigned a unique chunk handle. A chunk consists of 64 KB blocks and each block has a 32-bit
checksum. Chunks are stored on Linux files systems and are replicated on multiple sites; a user may
change the number of the replicas from the standard value of three to any desired value. The chunk size
is 64 MB; this choice is motivated by the desire to optimize performance for large files and to reduce
the amount of metadata maintained by the system.

A large chunk size increases the likelihood that multiple operations will be directed to the same
chunk; thus it reduces the number of requests to locate the chunk and, at the same time, it allows the
application to maintain a persistent network connection with the server where the chunk is located.
Space fragmentation occurs infrequently because the chunk for a small file and the last chunk of a large
file are only partially filled.

The architecture of a GFS cluster is illustrated in Figure 8.7. A master controls a large number of
chunk servers; it maintains metadata such as filenames, access control information, the location of all the
replicas for every chunk of each file, and the state of individual chunk servers. Some of the metadata is
stored in persistent storage (e.g., the operation log records the file namespace as well as the file-to-chunk
mapping).

The locations of the chunks are stored only in the control structure of the master’s memory and are
updated at system startup or when a new chunk server joins the cluster. This strategy allows the master
to have up-to-date information about the location of the chunks.

System reliability is a major concern, and the operation log maintains a historical record of metadata
changes, enabling the master to recover in case of a failure. As a result, such changes are atomic and are
not made visible to the clients until they have been recorded on multiple replicas on persistent storage.
To recover from a failure, the master replays the operation log. To minimize the recovery time, the
master periodically checkpoints its state and at recovery time replays only the log records after the last
checkpoint.

8.5 Google File System 257

Application
Master

Meta-information

Communication network

Linux file system

Chunk server Chunk serverChunk server

Linux file system Linux file system

Chunk data

Chunk handle
and data count

File name and chunk index

Chunk handle and chunk location

Instructions

State
information

FIGURE 8.7

The architecture of a GFS cluster. The master maintains state information about all system components;
it controls a number of chunk servers. A chunk server runs under Linux; it uses metadata provided by the
master to communicate directly with the application. The data flow is decoupled from the control flow. The
data and the control paths are shown separately, data paths with thick lines and control paths with thin lines.
Arrows show the flow of control among the application, the master, and the chunk servers.

Each chunk server is a commodity Linux system; it receives instructions from the master and responds
with status information. To access a file, an application sends to the master the filename and the chunk
index, the offset in the file for the read or write operation; the master responds with the chunk
handle and the location of the chunk. Then the application communicates directly with the chunk server
to carry out the desired file operation.

The consistency model is very effective and scalable. Operations, such as file creation, are atomic and
are handled by the master. To ensure scalability, the master has minimal involvement in file mutations
and operations such as write or append that occur frequently. In such cases the master grants a lease
for a particular chunk to one of the chunk servers, called the primary; then, the primary creates a serial
order for the updates of that chunk.

When data for a write straddles the chunk boundary, two operations are carried out, one for each
chunk. The steps for a write request illustrate a process that buffers data and decouples the control
flow from the data flow for efficiency:

1. The client contacts the master, which assigns a lease to one of the chunk servers for a particular
chunk if no lease for that chunk exists; then the master replies with the ID of the primary as well as
secondary chunk servers holding replicas of the chunk. The client caches this information.

2. The client sends the data to all chunk servers holding replicas of the chunk; each one of the chunk
servers stores the data in an internal LRU buffer and then sends an acknowledgment to the client.

258 CHAPTER 8 Storage Systems

3. The client sends a write request to the primary once it has received the acknowledgments from
all chunk servers holding replicas of the chunk. The primary identifies mutations by consecutive
sequence numbers.

4. The primary sends the write requests to all secondaries.
5. Each secondary applies the mutations in the order of the sequence numbers and then sends an

acknowledgment to the primary.
6. Finally, after receiving the acknowledgments from all secondaries, the primary informs the client.

The system supports an efficient checkpointing procedure based on copy-on-write to construct system
snapshots. A lazy garbage collection strategy is used to reclaim the space after a file deletion. In the
first step the filename is changed to a hidden name and this operation is time stamped. The master
periodically scans the namespace and removes the metadata for the files with a hidden name older than
a few days; this mechanism gives a window of opportunity to a user who deleted files by mistake to
recover the files with little effort.

Periodically, chunk servers exchange with the master the list of chunks stored on each one of them;
the master supplies them with the identity of orphaned chunks whose metadata has been deleted, and
such chunks are then deleted, Even when control messages are lost, a chunk server will carry out the
housecleaning at the next heartbeat exchange with the master. Each chunk server maintains in core the
checksums for the locally stored chunks to guarantee data integrity.

CloudStore is an open-source C++ implementation of GFS that allows client access not only from
C++ but also from Java and Python.

8.6 Apache Hadoop
A wide range of data-intensive applications such as marketing analytics, image processing, machine
learning, and Web crawling use Apache Hadoop, an open-source, Java-based software system.6 Hadoop
supports distributed applications handling extremely large volumes of data. Many members of the
community contributed to the development and optimization of Hadoop and several related Apache
projects such as Hive and HBase.

Hadoop is used by many organizations from industry, government, and research; the long list of
Hadoop users includes major IT companies such as Apple, IBM, HP, Microsoft, Yahoo!, and Amazon;
media companies such as The New York Times and Fox; social networks, including Twitter, Facebook,
and LinkedIn; and government agencies, such as the U.S. Federal Reserve. In 2011, the Facebook
Hadoop cluster had a capacity of 30 PB.

A Hadoop system has two components, a MapReduce engine and a database (see Figure 8.8). The
database could be the Hadoop File System (HDFS), Amazon S3, or CloudStore, an implementation of
the Google File System discussed in Section 8.5. HDFS is a distributed file system written in Java; it is
portable, but it cannot be directly mounted on an existing operating system. HDFS is not fully POSIX
compliant, but it is highly performant.

The Hadoop engine on the master of a multinode cluster consists of a job tracker and a task tracker,
whereas the engine on a slave has only a task tracker. The job tracker receives a MapReduce job

6Hadoop requires Java Runtime Environment (JRE) 1.6 or higher.

8.6 Apache Hadoop 259

Master node

MapReduce engine

Task tracker

Job tracker

HDFS

Name node

Data node

Slave node

HDFS

Data node

MapReduce engine

Task tracker

Slave node

HDFS

Data node

MapReduce engine

Task tracker

Slave node

HDFS

Data node

MapReduce engine

Task tracker

Slave node

HDFS

Data node

MapReduce engine

Task tracker

Client

FIGURE 8.8

A Hadoop cluster using HDFS. The cluster includes a master and four slave nodes. Each node runs a
MapReduce engine and a database engine, often HDFS. The job tracker of the master’s engine communicates
with the task trackers on all the nodes and with the name node of HDFS. The name node of HDFS shares
information about data placement with the job tracker to minimize communication between the nodes on
which data is located and the ones where it is needed.

from a client and dispatches the work to the task trackers running on the nodes of a cluster. To
increase efficiency, the job tracker attempts to dispatch the tasks to available slaves closest to the
place where it stored the task data. The task tracker supervises the execution of the work allocated to the
node. Several scheduling algorithms have been implemented in Hadoop engines, including Facebook’s
fair scheduler and Yahoo!’s capacity scheduler; see Section 6.8 for a discussion of cloud scheduling
algorithms.

HDFS replicates data on multiple nodes. The default is three replicas; a large dataset is distributed over
many nodes. The name node running on the master manages the data distribution and data replication and
communicates with data nodes running on all cluster nodes; it shares with the job tracker information
about data placement to minimize communication between the nodes on which data is located and the
ones where it is needed. Although HDFS can be used for applications other than those based on the
MapReduce model, its performance for such applications is not at par with the ones for which it was
originally designed.

260 CHAPTER 8 Storage Systems

8.7 Locks and Chubby: A locking service
Locks support the implementation of reliable storage for loosely coupled distributed systems; they enable
controlled access to shared storage and ensure atomicity of read and write operations. Furthermore,
critically important to the design of reliable distributed storage systems are distributed consensus prob-
lems, such as the election of a master from a group of data servers. A master has an important role
in system management; for example, in GFS the master maintains state information about all system
components.

Locking and the election of a master can be done using a version of the Paxos algorithm for asyn-
chronous consensus, discussed in Section 2.11. The algorithm guarantees safety without any timing
assumptions, a necessary condition in a large-scale system when communication delays are unpre-
dictable. Nevertheless, the algorithm must use clocks to ensure liveliness and to overcome the impossi-
bility of reaching consensus with a single faulty process [123]. Coordination using the Paxos algorithm
is discussed in Section 4.5.

Distributed systems experience communication problems such as lost messages, messages out of
sequence, or corrupted messages. There are solutions for handling these undesirable phenomena; for
example, one can use virtual time, that is, sequence numbers, to ensure that messages are processed
in an order consistent with the time they were sent by all processes involved, but this complicates the
algorithms and increases the processing time.

Advisory locks are based on the assumption that all processes play by the rules. Advisory locks do
not have any effect on processes that circumvent the locking mechanisms and access the shared objects
directly. Mandatory locks block access to the locked objects to all processes that do not hold the locks,
regardless of whether they use locking primitives.

Locks that can be held for only a very short time are called fine-grained, whereas coarse-grained
locks are held for a longer time. Some operations require meta-information about a lock, such as the
name of the lock, whether the lock is shared or held in exclusivity, and the generation number of the
lock. This meta-information is sometimes aggregated into an opaque byte string called a sequencer.

The question of how to most effectively support a locking and consensus component of a large-scale
distributed system demands several design decisions. A first design decision is whether the locks should
be mandatory or advisory. Mandatory locks have the obvious advantage of enforcing access control; a
traffic analogy is that a mandatory lock is like a drawbridge. Once it is up, all traffic is forced to stop.

An advisory lock is like a stop sign; those who obey the traffic laws will stop, but some might not. The
disadvantages of mandatory locks are added overhead and less flexibility. Once a data item is locked,
even a high-priority task related to maintenance or recovery cannot access the data unless it forces the
application holding the lock to terminate. This is a very significant problem in large-scale systems where
partial system failures are likely.

A second design decision is whether the system should be based on fine-grained or coarse-grained
locking. Fine-grained locks allow more application threads to access shared data in any time interval,
but they generate a larger workload for the lock server. Moreover, when the lock server fails for a period
of time, a larger number of applications are affected. Advisory locks and coarse-grained locks seem
to be a better choice for a system expected to scale to a very large number of nodes distributed in data
centers that are interconnected via wide area networks.

8.7 Locks and Chubby: A Locking Service 261

A third design decision is how to support a systematic approach to locking. Two alternatives come
to mind: (i) delegate to the clients the implementation of the consensus algorithm and provide a library
of functions needed for this task, or (ii) create a locking service that implements a version of the
asynchronous Paxos algorithm and provide a library to be linked with an application client to support
service calls. Forcing application developers to invoke calls to a Paxos library is more cumbersome and
more prone to errors than the service alternative. Of course, the lock service itself has to be scalable to
support a potentially heavy load.

Another design consideration is flexibility, the ability of the system to support a variety of applica-
tions. A name service comes immediately to mind because many cloud applications read and write
small files. The names of small files can be included in the namespace of the service to allow atomic
file operations. The choice should also consider the performance; a service can be optimized and clients
can cache control information. Finally, we should consider the overhead and resources for reaching
consensus. Again, the service seems to be more advantageous because it needs fewer replicas for high
availability.

In the early 2000s, when Google started to develop a lock service called Chubby [61], it was decided
to use advisory and coarse-grained locks. The service is used by several Google systems, including the
GFS discussed in Section 8.5 and BigTable (see Section 8.9).

C1

C3

C2

C4

Cn-1

Cn

Chubby cell

Replica

Replica

Replica

Replica

Master
.
.
.

FIGURE 8.9

A Chubby cell consisting of five replicas, one of which is elected as a master; n clients use RPCs to commu-
nicate with the master.

262 CHAPTER 8 Storage Systems

The basic organization of the system is shown in Figure 8.9. A Chubby cell typically serves one
data center. The cell server includes several replicas, the standard number of which is five. To reduce
the probability of correlated failures, the servers hosting replicas are distributed across the campus of a
data center.

The replicas use a distributed consensus protocol to elect a new master when the current one fails.
The master is elected by a majority, as required by the asynchronous Paxos algorithm, accompanied by
the commitment that a new master will not be elected for a period called a master lease. A session is a
connection between a client and the cell server maintained over a period of time; the data cached by the
client, the locks acquired, and the handles of all files locked by the client are valid for only the duration
of the session.

Clients use RPCs to request services from the master. When it receives a write request, the master
propagates the request to all replicas and waits for a reply from a majority of replicas before responding.
When it receives aread request the master responds without consulting the replicas. The client interface
of the system is similar to, yet simpler than, the one supported by the Unix File System. In addition, it
includes notification of events related to file or system status. A client can subscribe to events such as
file content modification, change or addition of a child node, master failure, lock acquired, conflicting
lock requests, and invalid file handle.

The files and directories of the Chubby service are organized in a tree structure and use a naming
scheme similar to that of Unix. Each file has a file handle similar to the file descriptor. The master of a
cell periodically writes a snapshot of its database to a GFS file server.

Each file or directory can act as a lock. To write to a file the client must be the only one holding
the file handle, whereas multiple clients may hold the file handle to read from the file. Handles are
created by a call to open () and destroyed by a call to close (). Other calls supported by the service
are GetContentsAndStat (), to get the file data and meta-information, SetContents, and Delete () and
several calls allow the client to acquire and release locks. Some applications may decide to create and
manipulate a sequencer with calls to SetSequencer (), which associates a sequencer with a handle, Get-
Sequencer () to obtain the sequencer associated with a handle, or check the validity of a sequencer with
CheckSequencer ().

The sequence of calls SetContents(), SetSequencer(), GetContentsAndStat(), and CheckSequencer()
can be used by an application for the election of a master as follows: all candidate threads attempt to
open a lock file, call it lfile, in exclusive mode; the one that succeeds in acquiring the lock for lfile
becomes the master, writes its identity in lfile, creates a sequencer for the lock of lfile, call it lfseq, and
passes it to the server. The other threads read the lfile and discover that they are replicas; periodically
they check the sequencer lfseq to determine whether the lock is still valid. The example illustrates the
use of Chubby as a name server. In fact, this is one of the most frequent uses of the system.

We now take a closer look at the actual implementation of the service. As pointed out earlier, Chubby
locks and Chubby files are stored in a database, and this database is replicated. The architecture of
these replicas shows that the stack consists of the Chubby component, which implements the Chubby
protocol for communication with the clients, and the active components, which write log entries and
files to the local storage of the replica see (Figure 8.10).

Recall that an atomicity log for a transaction-processing system allows a crash recovery procedure
to undo all-or-nothing actions that did not complete or to finish all-or-nothing actions that committed

8.7 Locks and Chubby: A Locking Service 263

disk

Chubby replica

Chubby

Fault-tolerant
database

Fault-
tolerant log Log

Chubby replica

Chubby

Fault-tolerant
database

Fault-tolerant
log

Replica interconnect

Chubby client network

disk

Log

FIGURE 8.10

Chubby replica architecture. The Chubby component implements the communication protocol with the
clients. The system includes a component to transfer files to a fault-tolerant database and a fault-tolerant log
component to write log entries. The fault-tolerant log uses the Paxos protocol to achieve consensus. Each
replica has its own local file system; replicas communicate with one another using a dedicated interconnect
and communicate with clients through a client network.

but did not record all of their effects. Each replica maintains its own copy of the log; a new log entry is
appended to the existing log and the Paxos algorithm is executed repeatedly to ensure that all replicas
have the same sequence of log entries.

The next element of the stack is responsible for the maintenance of a fault-tolerant database – in
other words, making sure that all local copies are consistent. The database consists of the actual data,
or the local snapshot in Chubby speak, and a replay log to allow recovery in case of failure. The state
of the system is also recorded in the database.

The Paxos algorithm is used to reach consensus on sets of values (e.g., the sequence of entries in
a replicated log). To ensure that the Paxos algorithm succeeds in spite of the occasional failure of a
replica, the following three phases of the algorithm are executed repeatedly:

1. Elect a replica to be the master/coordinator. When a master fails, several replicas may decide to
assume the role of a master. To ensure that the result of the election is unique, each replica generates
a sequence number larger than any sequence number it has seen, in the range (1, r), where r is the
number of replicas, and broadcasts it in a propose message. The replicas that have not seen a higher
sequence number broadcast a promise reply and declare that they will reject proposals from other
candidate masters. If the number of respondents represents a majority of replicas, the one that sent
the propose message is elected master.

264 CHAPTER 8 Storage Systems

2. The master broadcasts to all replicas an accept message, including the value it has selected, and
waits for replies, either acknowledge or reject.

3. Consensus is reached when the majority of the replicas send an acknowledge message; then the
master broadcasts the commit message.

Implementation of the Paxos algorithm is far from trivial. Although the algorithm can be expressed in
as few as ten lines of pseudocode, its actual implementation could be several thousand lines of C++ code
[71]. Moreover, practical use of the algorithm cannot ignore the wide variety of failure modes, including
algorithm errors and bugs in its implementation, and testing a software system of a few thousands lines
of codes is challenging.

8.8 Transaction processing and NoSQL databases
Many cloud services are based on online transaction processing (OLTP) and operate under tight latency
constraints. Moreover, these applications have to deal with extremely high data volumes and are expected
to provide reliable services for very large communities of users. It did not take very long for companies
heavily involved in cloud computing, such as Google and Amazon, e-commerce companies such as
eBay, and social media networks such as Facebook, Twitter, or LinkedIn, to discover that traditional
relational databases are not able to handle the massive amount of data and the real-time demands of
online applications that are critical for their business models.

The search for alternate models with which to store the data on a cloud is motivated by the need
to decrease the latency by caching frequently used data in memory on dedicated servers, rather than
fetching it repeatedly. In addition, distributing the data on a large number of servers allows multiple
transactions to occur at the same time and decreases the response time. The relational schema are of little
use for such applications in which conversion to key-value databases seems a much better approach.
Of course, such systems do not store meaningful metadata information, unless they use extensions that
cannot be exported easily.

A major concern for the designers of OLTP systems is to reduce the response time. The term
memcaching refers to a general-purpose distributed memory system that caches objects in main memory
(RAM); the system is based on a very large hash table distributed across many servers. The memcached
system is based on a client-server architecture and runs under several operating systems, including
Linux, Unix, Mac OS X, and Windows. The servers maintain a key-value associative array. The API
allows the clients to add entries to the array and to query it. A key can be up to 250 bytes long, and a
value can be no larger than 1 MB. The memcached system uses an LRU cache-replacement strategy.

Scalability is the other major concern for cloud OLTP applications and implicitly for datastores.
There is a distinction between vertical scaling, where the data and the workload are distributed to
systems that share resources such as cores and processors, disks, and possibly RAM, and horizontal
scaling, where the systems do not share either primary or secondary storage [66].

Cloud stores such as document stores and NoSQL databases are designed to scale well, do not exhibit
a single point of failure, have built-in support for consensus-based decisions, and support partitioning
and replication as basic primitives. Systems such as Amazon’s SimpleDB, discussed in Section 3.1;
CouchDB (see http://couchdb.apache.org/), or Oracle NoSQL database [277] are very
popular, though they provide less functionality than traditional databases. The key-value data model

8.8 Transaction Processing and NoSQL Databases 265

is very popular. Several such systems, including Voldemort, Redis, Scalaris, and Tokyo cabinet, are
discussed in [66].

The “soft-state” approach in the design of NoSQL allows data to be inconsistent and transfers the
task of implementing only the subset of the ACID properties required by a specific application to the
application developer. The NoSQL systems ensure that data will be “eventually consistent” at some
future point in time instead of enforcing consistency at the time when a transaction is “committed.”
Data partitioning among multiple storage servers and data replication are also tenets of the NoSQL
philosophy7; they increase availability, reduce response time, and enhance scalability.

The name NoSQL given to this storage model is misleading. Michael Stonebreaker notes [335] that
“blinding performance depends on removing overhead. Such overhead has nothing to do with SQL, but
instead revolves around traditional implementations of ACID transactions, multi-threading, and disk
management.”

The overhead of OLTP systems is due to four sources with equal contribution: logging, locking,
latching, and buffer management. Logging is expensive because traditional databases require transaction
durability; thus, every write to the database can be completed only after the log has been updated.
To guarantee atomicity, transactions lock every record, and this requires access to a lock table. Many
operations require multithreading, and the access to shared data structures, such as lock tables, demands
short-term latches8 for coordination. The breakdown of the instruction count for these operations in
existing DBMSs is as follows: 34.6% for buffer management, 14.2% for latching, 16.3% for locking,
11.9% for logging, and 16.2% for hand-coded optimization [157].

Today OLTP databases could exploit the vast amounts of resources of modern computing and com-
munication systems to store the data in main memory rather than rely on disk-resident B-trees and heap
files, locking-based concurrency control, and support for multithreading optimized for the computer
technology of past decades [157]. Logless, single-threaded, and transaction-less databases could replace
the traditional ones for some cloud applications.

Data replication is critical not only for system reliability and availability, but also for its performance.
In an attempt to avoid catastrophic failures due to power blackouts, natural disasters, or other causes
(see also Section 1.6), many companies have established multiple data centers located in different
geographic regions. Thus, data replication must be done over a wide area network (WAN). This could
be quite challenging, especially for log data, metadata, and system configuration information, due to
increased probability of communication failure and larger communication delays. Several strategies are
possible, some based on master/slave configurations, others based on homogeneous replica groups.

Master/slave replication can be asynchronous or synchronous. In the first case the master replicates
write-ahead log entries to at least one slave, and each slave acknowledges appending the log record as
soon as the operation is done. In the second case the master must wait for the acknowledgments from
all slaves before proceeding. Homogeneous replica groups enjoy shorter latency and higher availabil-
ity than master/slave configurations. Any member of the group can initiate mutations that propagate
asynchronously.

7It was suggested in the literature that a NoSQL database could be associated with the BASE acronym constructed from its
relevant properties: basically available, soft state, and eventually consistent. This is in contrast with traditional databases
characterized by ACID properties: atomicity, consistency, isolation, and durability.
8A latch is a counter that triggers an event when it reaches zero. For example, a master thread initiates a counter with the
number of worker threads and waits to be notified when all of them have finished.

266 CHAPTER 8 Storage Systems

In summary, the “one-size-fits-all” approach to traditional storage system design is replaced by a
flexible one tailored to the specific requirements of the applications. Sometimes the data management
ecosystem of a cloud computing environment integrates multiple databases; for example, Oracle inte-
grates its NoSQL database with the HDFS discussed in Section 8.6, with the Oracle Database, and with
the Oracle Exadata. Another approach, discussed in Section 8.10, is to partition the data and to guarantee
full ACID semantics within a partition, while supporting eventual consistency among partitions.

8.9 BigTable
BigTable is a distributed storage system developed by Google to store massive amounts of data and to
scale up to thousands of storage servers [73]. The system uses the Google File System discussed in
Section 8.5 to store user data as well as system information. To guarantee atomic read and write
operations, it uses the Chubby distributed lock service (see Section 8.7); the directories and the files in
the namespace of Chubby are used as locks.

The system is based on a simple and flexible data model. It allows an application developer to exercise
control over the data format and layout and reveals data locality information to the application clients.
Any read or write row operation is atomic, even when it affects more than one column. The column
keys identify column families, which are units of access control. The data in a column family is of the
same type. Client applications written in C++ can add or delete values, search for a subset of data, and
look up data in a row.

A row key is an arbitrary string of up to 64 KB, and a row range is partitioned into tablets serving as
units for load balancing. The time stamps used to index various versions of the data in a cell are 64-bit
integers; their interpretation can be defined by the application, whereas the default is the time of an
event in microseconds. A column key consists of a string defining the family name, a set of printable
characters, and an arbitrary string as qualifier.

The organization of a BigTable (see Figure 8.11) shows a sparse, distributed, multidimensional map
for an email application. The system consists of three major components: a library linked to application
clients to access the system, a master server, and a large number of tablet servers. The master server
controls the entire system, assigns tablets to tablet servers and balances the load among them, manages
garbage collection, and handles table and column family creation and deletion.

Internally, the space management is ensured by a three-level hierarchy: the root tablet, the location
of which is stored in a Chubby file, points to entries in the second element, the metadata tablet, which,
in turn, points to user tablets, collections of locations of users’ tablets. An application client searches
through this hierarchy to identify the location of its tablets and then caches the addresses for further use.

The performance of the system reported in [73] is summarized in Table 8.2. The table shows the
number of random and sequential read and write and scan operations for 1, 000 bytes, when the
number of servers increases from 1 to 50, then to 250, and finally to 500. Locking prevents the system
from achieving a linear speed-up, but the performance of the system is still remarkable due to a fair
number of optimizations. For example, the number of scans on 500 tablet servers is 7,843/2 × 103

instead of 15,385/2 × 103. It is reported that only 12 clusters use more than 500 tablet servers, whereas
some 259 clusters use between 1 and 19 tablet servers.

8.9 BigTable 267

Row keys
(lexicographic

order)

A pair of (row, column) keys uniquely identify a cell consisting of
multiple versions of the same data ordered by their time stamps.

Column keys
(family:qualifier)

UserId

C
on

te
nt

s

Su
bj

ec
t

R
ep

ly

FIGURE 8.11

A BigTable example. The organization of an email application as a sparse, distributed, multidimensional
map. The slice of the BigTable shown consists of a row with the key “UserId” and three family columns.
The “Contents” key identifies the cell holding the contents of emails received, the cell with key “Subject”
identifies the subject of emails, and the cell with the key “Reply” identifies the cell holding the replies. The
versions of records in each cell are ordered according to their time stamps. The row keys of this BigTable
are ordered lexicographically. A column key is obtained by concatenating the family and the qualifier fields.
Each value is an uninterpreted array of bytes.

Table 8.2 BigTable performance: the number of operations per tablet server.

Number of Random Sequential Random Sequential Scan

Tablet Servers Read Read Write Write

1 1,212 4,425 8,850 8,547 15,385
50 593 2,463 3,745 3,623 10,526

250 479 2,625 3,425 2,451 9,524
500 241 2,469 2,000 1,905 7,843

BigTable is used by a variety of applications, including Google Earth, Google Analytics, Google
Finance, and Web crawlers. For example, Google Earth uses two tables, one for preprocessing and one
for serving client data. The preprocessing table stores raw images; the table is stored on disk because
it contains some 70 TB of data. Each row of data consists of a single image; adjacent geographic
segments are stored in rows in close proximity to one another. The column family is very sparse;
it contains a column for every raw image. The preprocessing stage relies heavily on MapReduce to

268 CHAPTER 8 Storage Systems

clean and consolidate the data for the serving phase. The serving table stored on GFS is “only” 500 GB,
and it is distributed across several hundred tablet servers, which maintain in-memory column families.
This organization enables the serving phase of Google Earth to provide a fast response time to tens of
thousands of queries per second.

Google Analytics provides aggregate statistics such as the number of visitors to a Web page per day.
To use this service, Web servers embed a JavaScript code into their Web pages to record information
every time a page is visited. The data is collected in a raw-click BigTable of some 200 TB, with a row for
each end-user session. A summary table of some 20 TB contains predefined summaries for a Website.

8.10 Megastore
Megastore is scalable storage for online services. The system, distributed over several data centers, has a
very large capacity, 1 PB in 2011, and it is highly available. Megastore is widely used internally at Google;
it handles some 23 billion transactions daily: 3 billion write and 20 billion read transactions [37].

The basic design philosophy of the system is to partition the data into entity groups and replicate
each partition independently in data centers located in different geographic areas. The system supports
full ACID semantics within each partition and provides limited consistency guarantees across partitions
(see Figure 8.12). Megastore supports only those traditional database features that allow the system to
scale well and that do not drastically affect the response time.

Another distinctive feature of the system is the use of the Paxos consensus algorithm, discussed in
Section 2.11, to replicate primary user data, metadata, and system configuration information across data
centers and for locking. The version of the Paxos algorithm used by Megastore does not require a single
master. Instead, any node can initiate read and write operations to a write-ahead log replicated to a
group of symmetric peers.

The entity groups are application-specific and store together logically related data. For example, an
email account could be an entity group for an email application. Data should be carefully partitioned
to avoid excessive communication between entity groups. Sometimes it is desirable to form multiple
entity groups, as in the case of blogs [37].

The middle ground between traditional and NoSQL databases taken by the Megastore designers is
also reflected in the data model. The data model is declared in a schema consisting of a set of tables
composed of entries, each entry being a collection of named and typed properties. The unique primary
key of an entity in a table is created as a composition of entry properties. A Megastore table can be
a root or a child table. Each child entity must reference a special entity, called a root entity in its root
table. An entity group consists of the primary entity and all entities that reference it.

The system makes extensive use of BigTable. Entities from different Megastore tables can be mapped
to the same BigTable row without collisions. This is possible because the BigTable column name is a
concatenation of the Megastore table name and the name of a property. A BigTable row for the root
entity stores the transaction and all metadata for the entity group. As we saw in Section 8.9, multiple
versions of the data with different time stamps can be stored in a cell. Megastore takes advantage of
this feature to implement multi-version concurrency control (MVCC); when a mutation of a transaction
occurs, this mutation is recorded along with its time stamp, rather than marking the old data as obsolete

8.11 History Notes 269

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

Datacenters

Strict consistency
(ACID semantics)
enforced within an
entity group.

Loose consistency
among entity
groups.

Entity groups

FIGURE 8.12

Megastore organization. The data is partitioned into entity groups; full ACID semantics within each partition
and limited consistency guarantees across partitions are supported. A partition is replicated across data
centers in different geographic areas.

and adding the new version. This strategy has several advantages: read and write operations can
proceed concurrently, and a read always returns the last fully updated version.

A write transaction involves the following steps: (1) Get the timestamp and the log position of
the last committed transaction. (2) Gather the write operations in a log entry. (3) Use the consensus
algorithm to append the log entry and then commit. (4) Update the BigTable entries. (5) Clean up.

8.11 History notes
A 1989 survey of distributed file systems can be found in [316]. NFS Versions 2, 3, and 4 are defined
in RFCs 1094, 1813, and 3010, respectively. NFS Version 3 added a number of features, including
support for 64-bit file sizes and offsets, support for asynchronous writes on the server, additional file

270 CHAPTER 8 Storage Systems

attributes in many replies, and a readdirplus operation. These extensions allowed the new version
to handle files larger than 2 GB, to improve performance, and to get file handles and attributes along
with file names when scanning a directory. NFS Version 4 borrowed a few features from the Andrew
File System. WebNFS is an extension of NFS Versions 2 and 3; it enables operations through firewalls
and is more easily integrated into Web browsers.

AFS was developed at CMU in collaboration with IBM [250]; it was further developed as an open-
source system by IBM under the name OpenAFS in 2000. Sprite [165] was developed at UC Berkeley
in the mid-1980s. Locus [365] was initially developed at UCLA in the early 1980s and its development
was continued by Locus Computing Corporation. Apollo [211] was developed at Apollo Computer Inc.,
established in 1980 and acquired in 1989 by HP. The Remote File System (RFS) [35] was developed at
Bell Labs in the mid-1980s.

The documentation of a current version of GPFS and an analysis of the caching strategy are given
in GPFS [177] and [317], respectively.

Several generations of DBMSs based on different models have been developed through the years.
In 1968 IBM released the Information Management System (IMS) for IBM 360 computers; IMS was
based on the so-called navigational model, which supported manual navigation in a linked data set
where the data was organized hierarchically. The relational database management system (RDBMS)
model was introduced in 1970 by Codd [87]; in this model related records are linked together and can
be accessed using a unique key. Codd also introduced a tuple calculus as a basis for a query model for
an RDBMS; this led to the development of the Structured Query Language (SQL).

In 1973, the Ingres research project at UC Berkeley developed an RDBMS; several companies,
including Sybase, Informix, NonStop SQL, and Ingres, were established to create SQL RDBMS com-
mercial products based on the ideas generated by the Ingres project. IBM’s DB2 and SQL/DS dominated
the RDBMS market for mainframes during the later years of the 1980s. The Oracle Corporation, founded
in 1977, was also involved in the development of RDBMS.

The ACID properties of database transactions were defined by Jim Gray in 1981 [143] and the term
ACID was introduced in [156].

The object-oriented programming ideas of the 1980s led to the development of object-oriented
database management systems (OODBMSs) in which the information is packaged as objects. The ideas
developed by several research projects, including Encore-Ob/Server at Brown University, Exodus at the
University of Wisconsin at Madison, Iris at HP, ODE at Bell Labs, and the Orion project at MCC-Austin,
helped the development of several OODBMS commercial products [191].

The so-called NoSQL database management systems emerged in the 2000s. They do not follow
the RDBMS model, do not use SQL as a query language, may not give ACID grantees, and have a
distributed, fault-tolerant architecture.

8.12 Further reading
A 2011 article in the journal Science [164] discusses the volume of information stored, processed, and
transferred through networks. [251] is a comprehensive study of the storage technology until 2003.

Network File System Versions 2, 3, and 4 are discussed in [314], [286], and [287], respectively.
References [250] and [170] provide a wealth of information about the Andrew File System; [165]

8.13 Exercises and Problems 271

and [255] discuss in detail the Sprite File System. Other file systems such as Locus, Apollo, and the
Remote File System (RFS) are discussed in [365], [211], and [35], respectively. Storage systems are
also discussed in [103,105].

The General Parallel File System (GPFS) developed at IBM and its precursor, the TigerShark mul-
timedia file system, are presented in [317] and [159]. A good source for information about the Google
File System is [136].

The development of Chubby is covered in [61]. NoSQL databases are analyzed in several papers,
including [335], [157], and [66]. BigTable and Megastore, developed at Google, are discussed in
[73] and [37]. Evaluation of datastores is presented in [59] and a cloud storage abstraction for portable
applications is introduced in [166].

Oracle’s Lustre file system is discussed in [276], a cost storage analysis in [299], and an overview
of cloud storage is covered in [327].

8.13 Exercises and problems
Problem 1. Analyze the reasons for the introduction of storage area networks (SANs) and their prop-

erties. Hint: Read [251].

Problem 2. Block virtualization simplifies the storage management tasks in SANs. Provide solid argu-
ments in support of this statement. Hint: Read [251].

Problem 3. Analyze the advantages of memory-based checkpointing. Hint: Read [183].

Problem 4. Discuss the security of distributed file systems including those from Sun NFS, Apollo
Domain, Andrew, IBM AIX, RFS, and Sprite. Hint: Read [316].

Problem 5. The designers of the Google File System (GFS) have reexamined the traditional choices
for a File System. Discuss the four observations regarding these choices that have guided
the design of GFS. Hint: Read [136].

Problem 6. In his seminal paper on the virtues and limitations of the transaction concept [143], Jim
Gray analyzes logging and locking. Discuss the main conclusions of his analysis.

Problem 7. Michael Stonebreaker argues that “blinding performance depends on removing overhead.”
Discuss his arguments regarding the NoSQL concept. Hint: Read [335].

Problem 8. Discuss the Megastore data model. Hint: Read [37].

Problem 9. Discuss the use of locking in BigTable. Hint: Read [73] and [61].

This page is intentionally left blank

9
CHAPTER

Cloud Security

Security has been a concern since the early days of computing, when a computer was isolated in a
room and a threat could be posed only by malicious insiders. The Pandora’s box1 of threats opened
wide once computers were able to communicate with one another. In an interconnected world, various
embodiments of malware can migrate easily from one system to another, cross national borders, and
infect systems all over the globe.

The security of computing and communication systems takes on a new urgency as society becomes
increasingly dependent on the information infrastructure. Nowadays, even the critical infrastructure
of a nation can be attacked by exploiting flaws in computer security. Malware, such as the Stuxnet
virus, targets industrial control systems controlled by software [81]. Recently, the term cyberwarfare
has entered the dictionary with the meaning “actions by a nation-state to penetrate another nation’s
computers or networks for the purposes of causing damage or disruption” [85].

A computer cloud is a target-rich environment for malicious individuals and criminal organizations.
It is thus no surprise that security is a major concern for existing users and for potential new users
of cloud computing services. In Section 3.10 we identified some of the security threats perceived by
cloud users; in Section 9.1 we elaborate on this topic. Some of these risks are shared with other systems
supporting network-centric computing and network-centric content, e.g., service-oriented architectures
(SOAs), grids, and Web-based services.

Cloud computing is an entirely new approach to computing based on a new technology. It is therefore
reasonable to expect that new methods to deal with some of the security threats will be developed,
whereas other perceived threats will prove to be exaggerated. Indeed, “early on in the life cycle of a
technology, there are many concerns about how this technology will be used . . . they represent a barrier
to the acceptance . . . over the time, however, the concerns fade, especially if the value proposition is
strong enough” [174].

The idea that moving to a cloud liberates an organization from many technical concerns related to
computer security and eliminates internal threats is accepted by some members of the IT community.
As we shall see throughout this chapter, this seems a rather naïve point of view, because outsourcing
computing to a cloud generates major new security and privacy concerns. Moreover, service-level
agreements do not provide adequate legal protection for cloud computer users, who are often left to
deal with events beyond their control.

1In Greek mythology, Pandora was the first woman on Earth. When Prometheus stole fire from heaven, Zeus took vengeance
by presenting Pandora to Epimetheus, the brother of Prometheus. Pandora was given a beautiful box and told not to open it
under any circumstance. Impelled by curiosity, a trait given to her by the mischievous gods, Pandora opened the box, and all
evil contained therein escaped, except for one item at the bottom of the box: Elpis, the Spirit of Hope.

Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00009-9
© 2013 Elsevier Inc. All rights reserved.

273

274 CHAPTER 9 Cloud Security

One of the consequences of the breathtaking pace of development of information science and technol-
ogy is that standards, regulations, and laws governing the activities of organizations supporting the new
computing services, and in particular utility computing, have yet to be devised or adopted. As a result,
many issues related to privacy, security, and trust in cloud computing are far from settled. The pool of
resources of a cloud service provider can be dispersed over several countries or even several continents.
Since information can freely cross national borders there is a need for international regulations to be
adopted by the countries where data centers of cloud computing providers are located.

9.1 Cloud security risks
Some believe that it is very easy, possibly too easy, to start using cloud services without a proper
understanding of the security risks and without the commitment to follow the ethics rules for cloud
computing. A first question is: What are the security risks faced by cloud users? There is also the
possibility that a cloud could be used to launch large-scale attacks against other components of the
cyber infrastructure. The next question is: How can the nefarious use of cloud resources be prevented?

There are multiple ways to look at the security risks for cloud computing. A recent paper identifies
three broad classes of risk [83]: traditional security threats, threats related to system availability, and
threats related to third-party data control.

Traditional threats are those experienced for some time by any system connected to the Internet, but
with some cloud-specific twists. The impact of traditional threats is amplified due to the vast amount of
cloud resources and the large user population that can be affected. The fuzzy bounds of responsibility
between the providers of cloud services and users and the difficulties in accurately identifying the cause
of a problem add to cloud users’ concerns.

The traditional threats begin at the user site. The user must protect the infrastructure used to connect
to the cloud and to interact with the application running on the cloud. This task is more difficult because
some components of this infrastructure are outside the firewall protecting the user.

The next threat is related to the authentication and authorization process. The procedures in place
for one individual do not extend to an enterprise. In this case the cloud access of the members of an
organization must be nuanced; individuals should be assigned distinct levels of privilege based on their
roles in the organization. It is also nontrivial to merge or adapt the internal policies and security metrics
of an organization with the ones of the cloud.

Moving from the user to the cloud, we see that the traditional types of attack have already affected
cloud service providers. The favorite means of attack are distributed denial-of-service (DDoS) attacks,
which prevent legitimate users accessing cloud services; phishing;2 SQL injection;3 or cross-site
scripting.4

2Phishing is an attack aiming to gain information from a site database by masquerading as a trustworthy entity. Such
information could be names and credit card numbers, Social Security Numbers (SSN), or other personal information stored
by online merchants or other service providers.
3SQL injection is a form of attack typically used against a Web site. An SQL command entered in a Web form causes the

contents of a database used by the Web site to be dumped to the attacker or altered. SQL injection can be used against other
transaction-processing systems and is successful when the user input is not strongly typed and/or rigorously filtered.
4Cross-site scripting is the most popular form of attack against Web sites. A browser permits the attacker to insert client

scripts into the Web pages and thus bypass the access controls at the Web site.

9.1 Cloud Security Risks 275

Cloud servers host multiple VMs, and multiple applications may run under each VM. Multitenency in
conjunction with VMM vulnerabilities could open new attack channels for malicious users. Identifying
the path followed by an attacker is much more difficult in a cloud environment. Traditional investigation
methods based on digital forensics cannot be extended to a cloud, where the resources are shared among
a large user population and the traces of events related to a security incident are wiped out due to the
high rate of write operations on any storage media.

Availability of cloud services is another major concern. System failures, power outages, and other
catastrophic events could shut down cloud services for extended periods of time. When such an event
occurs, data lock-in, discussed in Section 3.5, could prevent a large organization whose business model
depends on that data from functioning properly.

Clouds could also be affected by phase transition phenomena and other effects specific to complex
systems (see Chapter 10). Another critical aspect of availability is that users cannot be assured that an
application hosted on the cloud will return correct results.

Third-party control generates a spectrum of concerns caused by the lack of transparency and limited
user control. For example, a cloud provider may subcontract some resources from a third party whose
level of trust is questionable. There are examples when subcontractors failed to maintain the customer
data. There are also examples when the third party was not a subcontractor but a hardware supplier and
the loss of data was caused by poor-quality storage devices [83].

Storing proprietary data on a cloud is risky because cloud provider espionage poses real dangers.
The terms of contractual obligations usually place all responsibilities for data security with the user.
The Amazon Web Services customer agreement, for example, does not help boost user confidence as
it states: “We . . . will not be liable to you for any direct, indirect, incidental . . . damages . . . nor . . . be
responsible for any compensation, reimbursement, arising in connection with: (A) your inability to use
the services . . . (B) the cost of procurement of substitute goods or services . . . or (D) any unauthorized
access to, alteration of, or deletion, destruction, damage, loss or failure to store any of your content or
other data.”

It is very difficult for a cloud user to prove that data has been deleted by the service provider. The lack
of transparency makes auditability a very difficult proposition for cloud computing. Auditing guidelines
elaborated by the National Institute of Standards and Technology (NIST), such as the Federal Informa-
tion Processing Standard (FIPS) and the Federal Information Security Management Act (FISMA), are
mandatory for U.S. government agencies.

The first release of the Cloud Security Alliance (CSA) report in 2010 identifies seven top threats to
cloud computing. These threats are the abuse of the cloud, APIs that are not fully secure, malicious
insiders, shared technology, account hijacking, data loss or leakage, and unknown risk profiles [97].
According to this report, the IaaS delivery model can be affected by all threats. PaaS can be affected
by all but the shared technology, whereas SaaS is affected by all but abuse and shared technology.

The term abuse of the cloud refers to the ability to conduct nefarious activities from the cloud – for
example, using multiple AWS instances or applications supported by IaaS to launch DDoS attacks or to
distribute spam and malware. Shared technology considers threats due to multitenant access supported
by virtualization. VMMs can have flaws allowing a guest operating system to affect the security of the
platform shared with other virtual machines.

Insecure APIs may not protect users during a range of activities, starting with authentication and
access control to monitoring and control of the application during runtime. The cloud service providers

276 CHAPTER 9 Cloud Security

do not disclose their hiring standards and policies; thus, the risks of malicious insiders cannot be ignored.
The potential harm due to this particular form of attack is great.

Data loss or leakage are two risks with devastating consequences for an individual or an organization
using cloud services. Maintaining copies of the data outside the cloud is often unfeasible due to the
sheer volume of data. If the only copy of the data is stored on the cloud, sensitive data is permanently
lost when cloud data replication fails and is followed by a storage media failure. Because some of the
data often includes proprietary or sensitive data, access to such information by third parties could have
severe consequences.

Account or service hijacking is a significant threat, and cloud users must be aware of and guard against
all methods of stealing credentials. Finally, unknown risk profile refers to exposure to the ignorance or
underestimation of the risks of cloud computing.

The 2011 version of the CSA report, “Security Guidance for Critical Area of Focus in Cloud Com-
puting V3.0,” provides a comprehensive analysis of and makes recommendations to minimize the risks
inherent in cloud computing [98].

An attempt to identify and classify the attacks in a cloud computing environment is presented in [147].
The three actors involved in the model considered are the user, the service, and the cloud infrastructure,
and there are six types of attacks possible (see Figure 9.1). The user can be attacked from two directions:

User

Service
Cloud

infrastructure

Control and
monitor the cloud

Invoke the service
and get results

Request resources
and manage them

Service-User

User-Service

Cloud-User

User-Cloud

Cloud-Service Service-Cloud

FIGURE 9.1

Surfaces of attacks in a cloud computing environment.

9.2 Security: The Top Concern for Cloud Users 277

from the service and from the cloud. SSL certificate spoofing, attacks on browser caches, or phishing
attacks are examples of attacks that originate at the service. The user can also be a victim of attacks that
either originate at the cloud or spoofs that originate from the cloud infrastructure.

The service can be attacked from the user. Buffer overflow, SQL injection, and privilege escalation
are the common types of attacks from the service. The service can also be subject to attack by the cloud
infrastructure; this is probably the most serious line of attack. Limiting access to resources, privilege-
related attacks, data distortion, and injecting additional operations are only a few of the many possible
lines of attack originated at the cloud.

The cloud infrastructure can be attacked by a user who targets the cloud control system. The types of
attack are the same ones that a user directs toward any other cloud service. The cloud infrastructure may
also be targeted by a service requesting an excessive amount of resources and causing the exhaustion
of the resources.

9.2 Security: The top concern for cloud users
Virtually all surveys report that security is the top concern for cloud users, who are accustomed to having
full control of all systems on which sensitive information is stored and processed. Users typically operate
inside a secure perimeter protected by a corporate firewall. In spite of the potential threats, users have to
extend their trust to the cloud service provider if they want to benefit from the economical advantages
of utility computing. This is a fairly difficult transition, yet it is a critical one for the future of cloud
computing. To support this transition, some argue that cloud security is in the hands of experts, so users
are even better protected than when they are in charge of their own security.

Major user concerns are unauthorized access to confidential information and data theft. Data is more
vulnerable in storage than while it is being processed. Data is kept in storage for extended periods of
time, whereas it is exposed to threats during processing for relatively short periods of time. Hence, close
attention should be paid to the security of storage servers and to data in transit.

This does not mean that threats during processing can be ignored; such threats can originate from
flaws in the VMM, rogue VMs, or a VMBR, as discussed in Section 5.12. There is also the risk of
unauthorized access and data theft posed by rogue employees of a cloud service provider (CSP). The
hiring and security screening policies of the CSP personnel are totally opaque processes to users, and
this justifies users’ concern about insider attacks.

The next concerns regard user control over the life cycle of data. It is virtually impossible for a user
to determine whether data that should have been deleted is actually deleted. Even if it was deleted, there
is no guarantee that the media was wiped and the next user is not able to recover confidential data. This
problem is exacerbated because the CSPs rely on seamless backups to prevent accidental data loss. Such
backups are done without users’ consent or knowledge. During this exercise data records can be lost,
accidentally deleted, or accessible to an attacker.

Lack of standardization is next on the list of concerns. Today there are no interoperability standards,
as we discussed in Section 3.5. Many questions do not have satisfactory answers at this time. For
example: What can be done when the service provided by the CSP is interrupted? How can we access
our critically needed data in case of a blackout? What if the CSP drastically raises its prices? What is
the cost of moving to a different CSP?

278 CHAPTER 9 Cloud Security

It is undeniable that auditing and compliance pose an entirely different set of challenges in cloud
computing. These challenges are not yet resolved. A full audit trail on a cloud is an infeasible proposition
at this time.

Another, less analyzed user concern is that cloud computing is based on a new technology expected
to evolve in the future. Case in point: autonomic computing is likely to enter the scene. When this
happens, self-organization, self-optimization, self-repair, and self-healing could generate additional
security threats. In an autonomic system it will be even more difficult than at present to determine when
an action occurred, what was the reason for that action, and how it created the opportunity for an attack
or for data loss. It is still unclear how autonomic computing can be compliant with privacy and legal
issues.

There is no doubt that multitenancy is the root cause of many user concerns. Nevertheless, multi-
tenancy enables a higher server utilization thus, lower costs. Because it is one of the pillars of utility
computing, users have to learn to live with multitenancy. The threats caused by multitenancy differ
from one cloud delivery model to another. For example, in the case of SaaS, private information such
as name, address, phone numbers, and possibly credit card numbers of many users is stored on one
server, and when the security of that server is compromised, a large number of users are affected. We
have already mentioned that multitenancy threats during processing time cannot be ignored.

Users are also greatly concerned about the legal framework for enforcing cloud computing security.
The cloud technology has moved much faster than cloud security and privacy legislation, so users have
legitimate concerns regarding the ability to defend their rights. Because the datacenters of a CSP may
be located in several countries, it is difficult to understand which laws apply – the laws of the country
where information is stored and processed, the laws of the countries where the information crossed
from the user to the datacenter, or the laws of the country where the user is located.

To make matters even more complicated, a CSP may outsource the handling of personal and/or
sensitive information. Existing laws stating that the CSP must exercise reasonable security may be
difficult to implement in a case where there is a chain of outsourcing to companies in different countries.
Finally, a CSP may be required by law to share private data with law enforcement agencies.

Now we examine briefly what cloud users can and should do to minimize security risks regarding
data handling by the CSP. First, users should evaluate the security policies and the mechanisms the CSP
has in place to enforce these policies. Then users should analyze the information that would be stored
and processed on the cloud. Finally, the contractual obligations should be clearly spelled out.

The contract between the user and the CSP should do the following [290]:

1. State explicitly the CSP’s obligations to securely handle sensitive information and its obligation to
comply with privacy laws.

2. Spell out CSP liabilities for mishandling sensitive information.
3. Spell out CSP liabilities for data loss.
4. Spell out the rules governing the ownership of the data.
5. Specify the geographical regions where information and backups can be stored.

To minimize security risks, a user may try to avoid processing sensitive data on a cloud. The Secure
Data Connector from Google carries out an analysis of the data structures involved and allows users to
access data protected by a firewall. This solution is not feasible for several classes of application, e.g.,

9.3 Privacy and Privacy Impact Assessment 279

processing of medical or personnel records. It may not be feasible when the cloud processing workflow
requires cloud access to the entire volume of user data.

When the volume of sensitive data or the processing workflow requires sensitive data to be stored
on a public or hybrid cloud, then, whenever feasible, data should be encrypted. This poses a dilemma
because encryption prevents indexing and searching the data. For some applications it is possible to
scramble the data to make it unintelligible to an intruder. Though this system is extremely inefficient,
hence impractical at this time, it is possible to process encrypted data using either a fully homomorphic
encryption scheme [134] or secure two-party computations [380].

9.3 Privacy and privacy impact assessment
The term privacy refers to the right of an individual, a group of individuals, or an organization to keep
information of a personal or proprietary nature from being disclosed to others. Many nations view
privacy as a basic human right. The Universal Declaration of Human Rights, Article 12, states: “No
one shall be subjected to arbitrary interference with his privacy, family, home or correspondence, nor to
attacks upon his honor and reputation. Everyone has the right to the protection of the law against such
interference or attacks.”

The U.S. Constitution contains no express right to privacy; however, the Bill of Rights reflects the
concern of the framers for protecting specific aspects of privacy.5 In the United Kingdom privacy is
guaranteed by the Data Protection Act. The European Court of Human Rights has developed many
documents defining the right to privacy.

At the same time, the right to privacy is limited by laws. For example, taxation laws require individuals
to share information about personal income or earnings. Individual privacy may conflict with other basic
human rights, e.g., freedom of speech. Privacy laws differ from country to country; laws in one country
may require public disclosure of information considered private in other countries and cultures.

The digital age has confronted legislators with significant challenges related to privacy as new threats
have emerged. For example, personal information voluntarily shared, but stolen from sites granted access
to it or misused, can lead to identity theft.

Some countries have been more aggressive than others in addressing the new privacy concerns. For
example, the countries of the European Union (EU) have very strict laws governing handling of personal
data in the digital age. A sweeping new privacy right, the “right to be forgotten,” is codified as part of a
broad new proposed data protection regulation in the EU. This right addresses the following problem:
Today it is very hard to escape your past when every photo, status update, and tweet lives forever on
some Web site.

Our discussion targets primarily public clouds where privacy has an entirely new dimension because
the data, often in an unencrypted form, resides on servers owned by a CSP. Services based on individual
preferences, the location of individuals, membership in social networks, or other personal information

5The First Amendment covers the protection of beliefs, the Third Amendment privacy of homes, the Fourth Amendment the
privacy of person and possessions against unreasonable searches, the Fifth Amendment the privilege against self-incrimination
and thus, the privacy of personal information. According to some Justices, the Ninth Amendment, which reads, “The enu-
meration in the Constitution, of certain rights, shall not be construed to deny or disparage others retained by the people,” can
be viewed as a protection of privacy in ways not explicitly specified by the first eight amendments in the Bill of Rights.

280 CHAPTER 9 Cloud Security

present a special risk. The owner of the data cannot rely exclusively on the CSP to guarantee the privacy
of the data.

Privacy concerns are different for the three cloud delivery models and also depend on the actual
context. For example, consider Gmail, a widely used SaaS delivery model. Gmail privacy policy reads
(see www.google.com/policies/privacy/, accessed on October 6, 2012): “We collect infor-
mation in two ways: information you give us . . . like your name, email address, telephone number or
credit card; information we get from your use of our services such as: . . . device information, . . . log
information, . . . location information, . . . unique application numbers, . . . local storage, . . . cookies
and anonymous identifiers . . . We will share personal information with companies, organizations or
individuals outside of Google if we have a good-faith belief that access, use, preservation or disclosure
of the information is reasonably necessary to: meet any applicable law, regulation, legal process or
enforceable governmental request . . . protect against harm to the rights, property or safety of Google,
our users or the public as required or permitted by law. We may share aggregated, nonpersonally iden-
tifiable information publicly and with our partners like publishers, advertisers or connected sites. For
example, we may share information publicly to show trends about the general use of our services.”

The main aspects of privacy are: the lack of user control, potential unauthorized secondary use, data
proliferation, and dynamic provisioning [290]. The lack of user control refers to the fact that user-centric
data control is incompatible with cloud usage. Once data is stored on the CSP’s servers, the user loses
control of the exact location, and in some instances the user could lose access to the data. For example,
in case of the Gmail service, the account owner has no control over where the data is stored or how long
old emails are stored in some backups of the servers.

A CSP may obtain revenues from unauthorized secondary usage of the information, e.g., for targeted
advertising. There are no technological means to prevent this use. Dynamic provisioning refers to threats
due to outsourcing. A range of issues is very fuzzy; for example, how to identify the subcontractors of
a CSP, what rights to the data they have, and what rights to data are transferable in case of bankruptcy
or merger.

There is a need for legislation addressing the multiple aspects of privacy in the digital age. A document
elaborated by the Federal Trade Commission for the U.S. Congress states [122]: “Consumer-oriented
commercial Web sites that collect personal identifying information from or about consumers online
would be required to comply with the four widely accepted fair information practices:

1. Notice. Web sites would be required to provide consumers clear and conspicuous notice of their
information practices, including what information they collect, how they collect it (e.g., directly or
through nonobvious means such as cookies), how they use it, how they provide Choice, Access, and
Security to consumers, whether they disclose the information collected to other entities, and whether
other entities are collecting information through the site.

2. Choice. Web sites would be required to offer consumers choices as to how their personal identifying
information is used beyond the use for which the information was provided (e.g., to consummate a
transaction). Such choice would encompass both internal secondary uses (such as marketing back
to consumers) and external secondary uses (such as disclosing data to other entities).

3. Access. Web sites would be required to offer consumers reasonable access to the information a Web
site has collected about them, including a reasonable opportunity to review information and to correct
inaccuracies or delete information.

9.4 Trust 281

4. Security. Web sites would be required to take reasonable steps to protect the security of the information
they collect from consumers. The Commission recognizes that the implementation of these practices
may vary with the nature of the information collected and the uses to which it is put, as well as with
technological developments. For this reason, the Commission recommends that any legislation be
phrased in general terms and be technologically neutral. Thus, the definitions of fair information
practices set forth in the statute should be broad enough to provide flexibility to the implementing
agency in promulgating its rules or regulations.”

There is a need for tools capable of identifing privacy issues in information systems, the so-called
Privacy Impact Assesment (PIA). As of mid-2012 there were no international standards for such a
process, though different countries and organizations require PIA reports. An example of an analysis
is to assess the legal implications of the U.K.-U.S. Safe Harbor process to allow U.S. companies to
comply with the European Directive 95/46/EC6 on the protection of personal data.

Such an assessment forces a proactive attitude toward privacy. An ab-initio approach to embedding
privacy rules in new systems is preferable to painful changes that could affect the functionality of
existing systems.

A PIA tool that could be deployed as a Web-based service is proposed in [345]. The inputs to the tool
includes project information, an outline of project documents, privacy risks, and stakeholders. The tool
will produce a PIA report consisting of a summary of findings, a risk summary, security, transparency,
and cross-border data flows.

The centerpiece of the PIA tool is a knowledge base (KB) created and maintained by domain experts.
The users of the SaaS service providing access to the PIA tool must fill in a questionnaire. The system
uses templates to generate additional questions necessary and to fill in the PIA report. An expert system
infers which rules are satisfied by the facts in the database and provided by the users and executes the
rule with the highest priority.

9.4 Trust
Trust in the context of cloud computing is intimately related to the general problem of trust in online
activities. In this section we first discuss the traditional concept of trust and then the trust necessary to
online activities.

According to the Merriam-Webster dictionary, trust means “assured reliance on the character, ability,
strength, or truth of someone or something.” Trust is a complex phenomenon; it enables cooperative
behavior, promotes adaptive organizational forms, reduces harmful conflict, decreases transaction costs,
facilitates formulation of ad hoc workgroups, and promotes effective responses to crisis [309].

Two conditions must exist for trust to develop. The first condition is risk, the perceived probability
of loss; indeed, trust would not be necessary if there were no risk involved, if there is a certainty that
an action can succeed. The second condition is interdependence, the idea that the interests of one entity
cannot be achieved without reliance on other entities. A trust relationship goes though three phases:
(1) a building phase, when trust is formed; (2) a stability phase, when trust exists; and (3) a dissolution
phase, when trust declines.

6See eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML.

282 CHAPTER 9 Cloud Security

There are different reasons for and forms of trust. Utilitarian reasons could be based on the belief that
the costly penalties for breach of trust exceed any potential benefits from opportunistic behavior. This
is the essence of deterrence-based trust. Another reason is the belief that the action involving the other
party is in the self-interest of that party. This is the so-called calculus-based trust. After a long sequence
of interactions, relational trust between entities can develop based on the accumulated experience of
dependability and reliance on each other.

The common wisdom is that an entity must work very hard to build trust but may lose that trust very
easily; a single violation of trust can lead to irreparable damage. Persistent trust is trust based on the
long-term behavior of an entity, whereas dynamic trust is based on a specific context, e.g., a state of the
system or the effect of technological developments.

The trust in the Internet “obscures or lacks entirely the dimensions of character and personality, nature
of relationship, and institutional character” of traditional trust [258]. The missing identity, personal
characteristics, and role definitions are elements we have to deal with in the context of online trust.

The Internet offers individuals the ability to obscure or conceal their identities. The resulting
anonymity reduces the cues normally used in judgments of trust. The identity is critical for devel-
oping trust relations; it allows us to base our trust on the past history of interactions with an entity.
Anonymity causes mistrust because identity is associated with accountability and, in the absence of
identity, accountability cannot be enforced. The opacity extends immediately from identity to personal
characteristics. It is impossible to infer whether the entity or individual we transact with is who it pre-
tends to be, since the transactions occur between entities separated in time and distance. Finally, there
are no guarantees that the entities we transact with fully understand the role they have assumed.

To remedy the loss of clues, we need security mechanisms for access control, transparency of identity,
and surveillance. The mechanisms for access control are designed to keep intruders and mischievous
agents out. Identity transparency requires that the relationship between a virtual agent and a physical
person should be carefully checked through methods such as biometric identification. Digital signatures
and digital certificates are used for identification. Surveillance could be based on intrusion detection or
on logging and auditing. The first option is based on real-time monitoring, the second on offline sifting
through audit records.

Credentials are used when an entity is not known. Credentials are issued by a trusted authority and
describe the qualities of the entity using the credential. A Doctor of Dental Surgery diploma hanging
on the wall of a dentist’s office is a credential that the individual has been trained by an accredited
university and hence is capable of performing a set of dental procedures; similarly, a digital signature
is a credential used in many distributed applications.

Policies and reputation are two ways of determining trust. Policies reveal the conditions to obtain
trust and the actions to take when some of the conditions are met. Policies require the verification of
credentials. Reputation is a quality attributed to an entity based on a relatively long history of interactions
with or possibly observations of the entity. Recommendations are based on trust decisions made by others
and filtered through the perspective of the entity assessing the trust.

In a computer science context, “trust of a party A to a party B for a service X is the measurable belief
of A in that B behaves dependably for a specified period within a specified context (in relation to service
X)” [272]. An assurance about the operation of a particular hardware or software component leads
to persistent social-based trust in that component. A comprehensive discussion of trust in computer
services in the semantic Web can be found in [26]. In Section 11.10 we discuss the concept of trust in

9.5 Operating System Security 283

the context of cognitive radio networks where multiple transmitters compete for free communication
channels. In Section 11.11 we present a cloud-based trust management service.

9.5 Operating system security
An operating system (OS) allows multiple applications to share the hardware resources of a physical
system, subject to a set of policies. A critical function of an OS is to protect applications against a
wide range of malicious attacks such as unauthorized access to privileged information, tempering with
executable code, and spoofing. Such attacks can now target even single-user systems such as personal
computers, tablets, or smartphones. Data brought into the system may contain malicious code; this
could occur via a Java applet, or data imported by a browser from a malicious Web site.

The mandatory security of an OS is considered to be “any security policy where the definition of
the policy logic and the assignment of security attributes is tightly controlled by a system security
policy administrator” [209]. Access control, authentication usage, and cryptographic usage policies are
all elements of mandatory OS security. The first policy specifies how the OS controls the access to
different system objects, the second defines the authentication mechanisms the OS uses to authenticate
a principal, and the last specifies the cryptographic mechanisms used to protect the data. A necessary
but not sufficient condition for security is that the subsystems tasked with performing security-related
functions are temper-proof and cannot be bypassed. The OS should confine an application to a unique
security domain.

Applications with special privileges that perform security-related functions are called trusted appli-
cations. Such applications should only be allowed the lowest level of privileges required to perform
their functions. For example, type enforcement is a mandatory security mechanism that can be used to
restrict a trusted application to the lowest level of privileges.

Enforcing mandatory security through mechanisms left to the discretion of users could lead to a
breach of security due not only to malicious intent but also carelessness or lack of understanding.
Discretionary mechanisms place the burden of security on individual users. Moreover, an application
may change a carefully defined discretionary policy without the consent of the user, whereas a mandatory
policy can only be changed by a system administrator.

Unfortunately, commercial operating systems do not support multilayered security; such systems
only distinguish between a completely privileged security domain and a completely unprivileged one.
Some operating systems, such as Windows NT, allow a program to inherit all the privileges of the
program invoking it, regardless of the level of trust in that program.

The existence of trusted paths, mechanisms supporting user interactions with trusted software, is
critical to system security. If such mechanisms do not exist, malicious software can impersonate trusted
software. Some systems provide trust paths for a few functions such as login authentication and password
changing and allow servers to authenticate their clients.

The solution discussed in [209] is to decompose a complex mechanism into several components with
well-defined roles. For example, the access control mechanism for the application space could consist
of enforcer and decider components. To access a protected object, the enforcer will gather the required
information about the agent attempting the access and will pass this information to the decider, together
with the information about the object and the elements of the policy decision. Finally, it will carry out
the actions requested by the decider.

284 CHAPTER 9 Cloud Security

A trusted-path mechanism is required to prevent malicious software invoked by an authorized appli-
cation to tamper with the attributes of the object and/or with the policy rules. A trusted path is also
required to prevent an impostor from impersonating the decider agent. A similar solution is proposed
for cryptography usage, which should be decomposed into an analysis of the invocation mechanisms
and an analysis of the cryptographic mechanism.

Another question is how an OS can protect itself and the applications running under it from malicious
mobile code attempting to gain access to the data and the other resources and compromise system
confidentiality and/or integrity. Java Security Manager uses the type-safety attributes of Java to prevent
unauthorized actions of an application running in a “sandbox.” Yet, the Java Virtual Machine (JVM)
accepts byte code in violation of language semantics; moreover, it cannot protect itself from tampering
by other applications.

Even if all these security problems could be eliminated, good security relies on the ability of the file
system to preserve the integrity of Java class code. The approach to require digitally signed applets and
accept them only from trusted sources could fail due to the all-or-nothing security model. A solution to
securing mobile communication could be to confine a browser to a distinct security domain.

Specialized closed-box platforms such as the ones on some cellular phones, game consoles, and auto-
mated teller machines (ATMs) could have embedded cryptographic keys that allow themselves to reveal
their true identity to remote systems and authenticate the software running on them. Such facilities are
not available to open-box platforms, the traditional hardware designed for commodity operating systems.

A highly secure operating system is necessary but not sufficient unto itself; application-specific
security is also necessary. Sometimes security implemented above the operating system is better. This
is the case for electronic commerce that requires a digital signature on each transaction.

We conclude that commodity operating systems offer low assurance. Indeed, an OS is a complex
software system consisting of millions of lines of code, and it is vulnerable to a wide range of malicious
attacks. An OS poorly isolates one application from another, and once an application is compromised,
the entire physical platform and all applications running on it can be affected. The platform security
level is thus reduced to the security level of the most vulnerable application running on the platform.

Operating systems provide only weak mechanisms for applications to authenticate to one another and
do not have a trusted path between users and applications. These shortcomings add to the challenges of
providing security in a distributed computing environment. For example, a financial application cannot
determine whether a request comes from an authorized user or from a malicious program; in turn, a
human user cannot distinguish a response from a malicious program impersonating the service from
the response provided by the service itself.

9.6 Virtual machine security
The hybrid and the hosted VM models in Figures 5.3(c) and (d), respectively, expose the entire system
to the vulnerability of the host operating system; thus, we will not analyze these models. Our discussion
of virtual machine security is restricted to the traditional system VM model in Figure 5.3(b), where the
VMM controls access to the hardware.

Virtual security services are typically provided by the VMM, as shown in Figure 9.2(a). Another
alternative is to have a dedicated security services VM, as shown in Figure 9.2(b). A secure trusted

9.6 Virtual Machine Security 285

Virtual Machine Monitor and
Security Services

Guest VM Guest VM

Guest OS Guest OS

Application Application

Virtual Machine Monitor and Security Services

Guest VM Guest VM

Guest OS Guest OS

Application Application
Security

Services VM
Reduced
Guest OS

Security
Services

Trusted Computing
Base (TCB)

Front end of VM
Security Services

Front end of VM
Security Services

(a) (b)
FIGURE 9.2

(a) Virtual security services provided by the VMM. (b) A dedicated security VM.

computing base (TCB) is a necessary condition for security in a virtual machine environment; if the
TCB is compromised, the security of the entire system is affected.

The analysis of Xen and vBlades in Sections 5.8 and 5.10 shows that VM technology provides a
stricter isolation of virtual machines from one another than the isolation of processes in a traditional
operating system. Indeed, a VMM controls the execution of privileged operations and can thus enforce
memory isolation as well as disk and network access. The VMMs are considerably less complex and
better structured than traditional operating systems; thus, they are in a better position to respond to
security attacks. A major challenge is that a VMM sees only raw data regarding the state of a guest
operating system, whereas security services typically operate at a higher logical level, e.g., at the level
of a file rather than a disk block.

A guest OS runs on simulated hardware, and the VMM has access to the state of all virtual machines
operating on the same hardware. The state of a guest virtual machine can be saved, restored, cloned,
and encrypted by the VMM. Not only can replication ensure reliability, it can also support security,
whereas cloning could be used to recognize a malicious application by testing it on a cloned system
and observing whether it behaves normally. We can also clone a running system and examine the effect
of potentially dangerous applications. Another interesting possibility is to have the guest VM’s files
moved to a dedicated VM and thus, protect it from attacks [389]; this is possible because inter-VM
communication is faster than communication between two physical machines.

Sophisticated attackers are able to fingerprint virtual machines and avoid VM honeypots designed to
study the methods of attack. They can also attempt to access VM-logging files and thus recover sensitive
data; such files have to be very carefully protected to prevent unauthorized access to cryptographic keys
and other sensitive data.

There is no free lunch; thus, we expect to pay some price for the better security provided by virtualiza-
tion. This price includes: higher hardware costs, because a virtual system requires more resources, such
as CPU cycles, memory, disk, and network bandwidth; the cost of developing VMMs and modifying
the host operating systems in case of paravirtualization; and the overhead of virtualization because the
VMM is involved in privileged operations.

286 CHAPTER 9 Cloud Security

A recent paper [389] surveys VM-based intrusion detection systems such asLivewire andSiren,
which exploit the three capabilities of a virtual machine for intrusion detection: isolation, inspection, and
interposition. We have examined isolation; inspection means that the VMM has the ability to review
the state of the guest VMs, and interposition means that the VMM can trap and emulate the privi-
leged instruction issued by the guest VMs. The paper also discusses VM-based intrusion prevention
systems such as SVFS, NetTop, and IntroVirt and surveys Terra, a VM-based trust com-
puting platform. Terra uses a trusted virtual machine monitor to partition resources among virtual
machines.

The security group involved with the NIST project has identified the following VMM- and VM-based
threats:

• VMM-based threats:

1. Starvation of resources and denial of service for some VMs. Probable causes: (a) badly configured
resource limits for some VMs; (b) a rogue VM with the capability to bypass resource limits set
in the VMM.

2. VM side-channel attacks. Malicious attacks on one or more VMs by a rogue VM under the same
VMM. Probable causes: (a) lack of proper isolation of inter-VM traffic due to misconfiguration
of the virtual network residing in the VMM; (b) limitation of packet inspection devices to
handle high-speed traffic, e.g., video traffic; (c) presence of VM instances built from insecure
VM images, e.g., a VM image having a guest OS without the latest patches.

3. Buffer overflow attacks.

• VM-based threats:

1. Deployment of rogue or insecure VM. Unauthorized users may create insecure instances from
images or may perform unauthorized administrative actions on existing VMs. Probable cause:
improper configuration of access controls on VM administrative tasks such as instance creation,
launching, suspension, reactivation, and so on.

2. Presence of insecure and tampered VM images in the VM image repository. Probable causes:
(a) lack of access control to the VM image repository; (b) lack of mechanisms to verify the
integrity of the images, e.g., digitally signed image.

Sections 9.7, 9.8, 9.9, and 9.10 discuss in depth various aspects related to virtualization and security.

9.7 Security of virtualization
The relationship between virtualization and security is a complex one and has two distinct aspects: vir-
tualization for security and the security of virtualization [215]. In Section 5.1 we praised the virtues of
virtualization. We also discussed two of the problems associated with virtual environments: (a) the neg-
ative effect on performance due to the additional overhead; and (b) the need for more powerful systems
to run multiple virtual machines. In this section we take a closer look at the security of virtualization.

One of the most important virtues of virtualization is that the complete state of an operating system
running under a virtual machine is captured by the VM. This state can be saved in a file and then the
file can be copied and shared. There are several useful implications regarding this fact:

9.7 Security of Virtualization 287

1. Ability to support the IaaS delivery model. In this model a user selects an image matching the local
environment used by the application and then uploads and runs the application on the cloud using
this image.

2. Increased reliability. An operating system with all the applications running under it can be replicated
and switched to a hot standby7 in case of a system failure.

3. Straightforward mechanisms to implement resource management policies:

• To balance the load of a system, an OS and the applications running under it can be moved to
another server when the load on the current server exceeds a high-water mark.

• To reduce power consumption, the load of lightly loaded servers can be moved to other servers
and then these servers can be turned off or set on standby mode.

4. Improved intrusion prevention and detection. In a virtual environment a clone can look for known
patterns in system activity and detect intrusion. The operator can switch to a hot standby when
suspicious events are detected.

5. Secure logging and intrusion protection. Intrusion detection can be disabled and logging can be
modified by an intruder when implemented at the OS level. When these services are implemented
at the VMM/hypervisor layer, the services cannot be disabled or modified. In addition, the VMM
may be able to log only events of interest for a post-attack analysis.

6. More efficient and flexible software testing. Instead of a very large number of dedicated systems
running under different operating systems, different versions of each operating system, and different
patches for each version, virtualization allows the multitude of OS instances to share a small number
of physical systems.

Is there a price to pay for the benefits of virtualization outlined here? There is always the other side
of a coin, so we should not be surprised that the answer to this question is a resounding “yes.” In a
2005 paper [132] Garfinkel and Rosenblum argued that the serious implications of virtualization on
system security cannot be ignored. This theme was revisited in 2008 by Price [297], who reaches similar
conclusions.

A first type of undesirable effects of virtualization leads to the diminished ability of an organization
to manage its systems and track their status:

• The number of physical systems in the inventory of an organization is limited by cost, space, energy
consumption, and human support. Creating a VM reduces ultimately to copying a file; therefore the
explosion in the number of VMs is a fact of life. The only limitation for the number of VMs is the
amount of storage space available.

• In addition to quantity, there is also a qualitative aspect to the explosion in the number of VMs.
Traditionally, organizations install and maintain the same version of system software. In a virtual
environment such homogeneity cannot be enforced; thus, the number of different operating systems,
their versions, and the patch status of each version will be very diverse, and this heterogeneity will
tax the support team.

• Probably one of the most critical problems posed by virtualization is related to the software life cycle.
The traditional assumption is that the software life cycle is a straight line, so patch management

7A hot standby is a method of achieving redundancy. The primary and the secondary or backup systems run simultaneously.
The data is mirrored to the secondary in real time so that both systems contain identical information.

288 CHAPTER 9 Cloud Security

is based on a monotonic forward progress. However, the virtual execution model maps to a tree
structure rather than a line; indeed, at any point in time multiple instances of the VM can be created
and then each one of them can be updated, different patches installed, and so on. This problem has
serious implications for security, as we shall see shortly.

Let us now concentrate our discussion on direct implications of virtualization on security. A first
question is: How can the support team deal with the consequences of an attack in a virtual environ-
ment? Do we expect the infection from a computer virus or a worm to be less manageable in a virtual
environment? The surprising answer to this question is that an infection may last indefinitely.

Some of the infected VMs may be dormant at the time when the measures to clean up the systems
are taken and then, at a later time, they could wake up and infect other systems. This scenario can repeat
itself and guarantee that infection will last indefinitely. This is in stark contrast to the manner in which
an infection is treated in nonvirtual environments; once an infection is detected, the infected systems
are quarantined and then cleaned up. The systems will then behave normally until the next episode of
infection occurs.

The more general observation is that in a traditional computing environment a steady state can be
reached. In this steady state all systems are brought up to a “desirable” state, whereas “undesirable”
states – states in which some of the systems are either infected by a virus or display an undesirable pat-
tern of behavior – are only transient. This desirable state is reached by installing the latest version of the
system software and then applying the latest patches to all systems. Due to the lack of control, a virtual
environment may never reach such a steady state. In a nonvirtual environment the security can be com-
promised when an infected laptop is connected to the network protected by a firewall or when a virus is
brought in on removable media. But unlike a virtual environment, the system can still reach a steady state.

A side effect of the ability to record in a file the complete state of a VM is the possibility to roll back a
VM. This opens wide the door for a new type of vulnerability caused by events recorded in the memory
of an attacker. Two such situations are discussed in [132]. The first is that one-time passwords are
transmitted in the clear and the protection is guaranteed only if the attacker does not have the possibility
to access passwords used in previous sessions. If a system runs the S/KEY password system8 an attacker
can replay rolled-back versions and access past sniffed passwords.

The second situation is related to the requirement of some cryptographic protocols, and even non-
cryptographic protocols, regarding the “freshness” of the random-number source used for session keys
and nonces.9 This situation occurs when a VM is rolled back to a state in which a random number has
been generated but not yet used.

Even noncryptographic use of random numbers may be affected by the rollback scenario. For exam-
ple, the initial sequence number for a new TCP connection must be “fresh”; when it is not, the door to
TCP hijacking is left open.

8S/KEY is a password system based on Leslie Lamport’s scheme. It is used by several operating systems, including Linux,
OpenBSD, and NetBSD. The real password of the user is combined with a short set of characters and a counter that is
decremented at each use to form a single-use password.
9A nonce is a random or pseudo-random number issued in an authentication protocol to ensure that old communications

cannot be reused in replay attacks. For example, nonces are used to calculate an MD5 of the password for HTTP digest access
authentication. Each time the authentication challenge response code is presented, the nonces are different; thus replay attacks
are virtually impossible. This guarantees that an online order to Amazon or other online store cannot be replayed.

9.8 Security Risks Posed by Shared Images 289

Another undesirable effect of the virtual environment affects the trust. Recall from Section 9.4 that
trust is conditioned by the ability to guarantee the identity of entities involved. Each computer system
in a network has a unique physical, or MAC, address; the uniqueness of this address guarantees that an
infected or malicious system can be identified and then cleaned, shut down, or denied network access.
This process breaks down for virtual systems when VMs are created dynamically. Often, to avoid name
collision, a random MAC address is assigned to a new VM. The other effect discussed at length in
Section 9.8 is that popular VM images are shared by many users.

The ability to guarantee confidentiality of sensitive data is yet another pillar of security affected by
virtualization. Virtualization undermines the basic principle that the time-sensitive data stored on any
system should be reduced to a minimum. First, the owner has very limited control over where sensitive
data is stored; it could be spread across many servers and may be left on some of them indefinitely.
To be able to roll it back, a VMM records the state of a VM. This process allows an attacker to access
sensitive data the owner attempted to destroy.

9.8 Security risks posed by shared images
Even when we assume that a cloud service provider is trustworthy, many users either ignore or under-
estimate the danger posed by other sources of concern. One of them, especially critical to the IaaS
cloud delivery model, is image sharing. For example, a user of AWS has the option to choose between
Amazon Machine Images (AMIs), accessible through the Quick Start or the Community AMI menus of
the EC2 service. The option of using one of these AMIs is especially tempting for a first-time or less
sophisticated user.

First, let’s review the process to create an AMI. We can start from a running system, from another
AMI, or from the image of a VM and copy the contents of the file system to the S3, the so-called
bundling. The first of the three steps in bundling is to create an image, the second step is to compress
and encrypt the image, and the last step is to split the image into several segments and then upload the
segments to the S3.

Two procedures for the creation of an image are available: ec2-bundle-image and ec2-
bundle-volume. The first is used for images prepared as loopback files10 when the data is transferred
to the image in blocks. To bundle a running system, the creator of the image can use the second procedure
when bundling works at the level of the file system and files are copied recursively to the image.

To use an image, a user has to specify the resources, provide the credentials for login, provide a
firewall configuration, and specify the region, as discussed in Section 3.1. Once instantiated, the user
is informed about the public DNS and the virtual machine is made available. A Linux system can be
accessed using ssh at port 22, whereas the Remote Desktop at port 3389 is used for Windows.

A recent paper reports on the results of an analysis carried out over a period of several months, from
November 2010 to May 2011, of over 5,000 AMIs available through the public catalog at Amazon [38].

10A loopback file system (LOFS) is a virtual file system that provides an alternate path to an existing file system. When other
file systems are mounted onto an LOFS file system, the original file system does not change. One useful purpose of LOFS is
to take a CD-ROM image file, a file of type iso, and mount it on the file system and then access it without the need to record
a CD-R. It is somewhat equivalent to the Linux mount -o loop option but adds a level of abstraction; most commands
that apply to a device can be used to handle the mapped file.

290 CHAPTER 9 Cloud Security

Many of the analyzed images allowed a user to undelete files and recover credentials, private keys, or
other types of sensitive information with little effort and using standard tools. The results of this study
were shared with Amazon’s Security Team, which acted promptly to reduce the threats posed to AWS
users.

The details of the testing methodology can be found in [38]. Here we only discuss the results. The
study was able to audit some 5,303 images out of the 8,448 Linux AMIs and 1,202 Windows AMIs at
Amazon sites in the United States, Europe, and Asia. The audit covered software vulnerabilities and
security and privacy risks.

The average duration of an audit was 77 minutes for a Windows image and 21 minutes for a Linux
image; the average disk space used was about 1 GB and 2.7 GB, respectively. The entire file system of a
Windows AMI was audited because most malware targets Windows systems. Only directories containing
executables for Linux AMIs were scanned; this strategy and the considerably longer start-up time of
Windows explain the time discrepancy of the audits across the types of AMIs.

The software vulnerability audit revealed that 98% of the Windows AMIs (249 out of 253) and
58% of Linux AMIs (2,005 out of 3,432) audited had critical vulnerabilities. The average num-
ber of vulnerabilities per AMI were 46 for Windows and 11 for Linux. Some of the images were
rather old; 145, 38, and 2 Windows AMIs and 1,197, 364, and 106 Linux were older than two,
three, and four years, respectively. The tool used to detect vulnerabilities, Nessus, available from
www.tenable.com/productus/nessus, classifies the vulnerabilities based on their severity
in four groups, at levels 0–3. The audit reported only vulnerabilities of the highest severity level, e.g.,
remote code execution.

Three types of security risks were analyzed: (1) backdoors and leftover credentials, (2) unsolicited
connections, and (3) malware. An astounding finding is that about 22% of the scanned Linux AMIs
contained credentials allowing an intruder to remotely log into the system. Some 100 passwords, 995
ssh keys, and 90 cases in which both passwords and keys could be retrieved were identified.

To rent a Linux AMI, a user must provide the public part of the ssh key, and this key is stored in
the authorized_keys in the home directory. This opens a backdoor for a malicious creator of an
AMI who does not remove his own public key from the image and can remotely log into any instance
of this AMI. Another backdoor is opened when the ssh server allows password-based authentication
and the malicious creator of an AMI does not remove his own password. This backdoor is opened even
wider as one can extract the password hashes and then crack the passwords using a tool such as John
the Ripper (see www.openwall.com/john).

Another threat is posed by the omission of the cloud-init script that should be invoked when
the image is booted. This script, provided by Amazon, regenerates the host key an ssh server uses to
identify itself; the public part of this key is used to authenticate the server. When this key is shared
among several systems, these systems become vulnerable to man-in-the middle11 attacks. When this

11In a man-in-the-middle an attacker impersonates the agents at both ends of a communication channel and makes them
believe that they communicate through a secure channel. For example, if B sends her public key to A, but C is able to intercept
it, such an attack proceeds as follows: C sends a forged message to A claiming to be from B but instead includes C’s public
key. Then A encrypts his message with C’s key, believing that he is using B’s key, and sends the encrypted message to B. The
intruder, C, intercepts, deciphers the message using her private key, possibly alters the message, and re-encrypts the public
key B originally sent to A. When B receives the newly encrypted message, she believes it came from A.

9.8 Security Risks Posed by Shared Images 291

script does not run, an attacker can use the NMap tool12 to match the ssh keys discovered in the AMI
images with the keys obtained via NMap. The study reports that the authors were able to identify more
than 2,100 instances following this procedure.

Unsolicited connections pose a serious threat to a system. Outgoing connections allow an outside
entity to receive privileged information, e.g., the IP address of an instance and events recorded by a
syslog daemon to files in the var/log directory of a Linux system. Such information is available only
to users with administrative privileges. The audit detected two Linux instances with modified syslog
daemons, which forwarded to an outside agent information about events such as login and incoming
requests to a Web server. Some of the unsolicited connections are legitimate – for example, connections
to a software update site. It is next to impossible to distinguish legitimate from malicious connections.

Malware, including viruses, worms, spyware, and trojans, were identified using ClamAV, a software
tool with a database of some 850,000 malware signatures, available from www.clamav.net. Two
infected Windows AMIs were discovered, one with a Trojan-Spy (variant 50112) and a second one with a
Trojan-Agent (variant 173287). The first trojan carries out keylogging and allows stealing data from the
files system and monitoring processes; the AMI also included a tool called Trojan.Firepass to decrypt
and recover passwords stored by the Firefox browser.

The creator of a shared AMI assumes some privacy risks; his private keys, IP addresses, browser
history, shell history, and deleted files can be recovered from the published images. A malicious agent
can recover the AWS API keys that are not password protected. Then the malicious agent can start
AMIs and run cloud applications at no cost to herself, since the computing charges are passed on to
the owner of the API key. The search can target files with names such as pk − [0 − 9A − Z]∗.pem or
cert − [0 − 9A − Z]∗.pem used to store API keys.

Another avenue for a malicious agent is to recover ssh keys stored in files named id_dsa and id_rsa.
Though ssh keys can be protected by a passphrase,13 the audit determined that the majority of ssh
keys (54 out of 56) were not password protected.

Recovery of IP addresses of other systems owned by the same user requires access to the lastlog
or the lastb databases. The audit found 187 AMIs with a total of more than 66,000 entries in their
lastb databases. Nine AMIs contained Firefox browser history and allowed the auditor to identify the
domains contacted by the user.

In addition, 612 AMIs contained at least one shell history file. The audit analyzed 869 history files
named ∼/.history, ∼/.bash_history, and ∼/.sh_history, containing some, 160,000 lines of command
history, and identified 74 identification credentials. Users should be aware that when HTTP is used to
transfer information from a user to a Web site, the GET requests are stored in the logs of the Web server.
Passwords and credit card numbers communicated via a GET request can be exploited by a malicious
agent with access to such logs. When remote credentials such as the DNS management password are
available, a malicious agent can redirect traffic from its original destination to her own system.

12NMap is a security tool running on most operating systems, including Linux, Microsoft Windows, Solaris, HP-UX, SGI-IRIX,
and BSD variants such as Mac OS X, to map the network. Mapping the network means discovering hosts and services in a
network.
13A passphrase is a sequence of words used to control access to a computer system; it is the analog of a password but provides
added security. For high-security nonmilitary applications, NIST recommends an 80-bit-strength passphrase. Hence a secure
passphrase should consist of at least 58 characters, including uppercase and alphanumeric characters. The entropy of written
English is less than 1.1 bits per character.

292 CHAPTER 9 Cloud Security

Recovery of deleted files containing sensitive information poses another risk for the provider of an
image. When the sectors on the disk containing sensitive information are actually overwritten by another
file, recovery of sensitive information is much harder. To be safe, the creator of the image effort should
use utilities such as shred,scrub,zerofree, or wipe to make recovery of sensitive information
next to impossible. If the image is created with the block-level tool discussed at the beginning of
this section, the image will contain blocks of the file system marked as free; such blocks may contain
information from deleted files. The audit process was able to recover files from 98% of the AMIs using the
exundelete utility. The number of files recovered from an AMI was as low as 6 and as high as 40,000.

We conclude that the users of published AMIs as well as the providers of images may be vulnerable
to a wide range of security risks and must be fully aware of the dangers posed by image sharing.

9.9 Security risks posed by a management OS
We often hear that virtualization enhances security because a virtual machine monitor or hypervisor is
considerably smaller than an operating system. For example, the Xen VMM discussed in Section 5.8 has
approximately 60,000 lines of code, one to two orders of magnitude fewer than a traditional operating
system.14

A hypervisor supports stronger isolation between the VMs running under it than the isolation between
processes supported by a traditional operating system. Yet the hypervisor must rely on a management OS
to create VMs and to transfer data in and out from a guest VM to storage devices and network interfaces.

A small VMM can be carefully analyzed; thus, one could conclude that the security risks in a virtual
environment are diminished. We have to be cautious with such sweeping statements. Indeed, the trusted
computer base (TCB)15 of a cloud computing environment includes not only the hypervisor but also
the management OS. The management OS supports administrative tools, live migration, device drivers,
and device emulators.

For example, the TCB of an environment based on Xen includes not only the hardware and the
hypervisor but also the management operating system running in the so-called Dom0 (see Figure 9.3).
System vulnerabilities can be introduced by both software components, Xen, and the management
operating system. An analysis of Xen vulnerabilities reports that 21 of the 23 attacks were against
service components of the control VM [90]; 11 attacks were attributed to problems in the guest OS
caused by buffer overflow16 and 8 were denial-of-service attacks.

Dom0 manages the building of all user domains (DomU), a process consisting of several steps:

1. Allocate memory in the Dom0 address space and load the kernel of the guest operating system from
secondary storage.

2. Allocate memory for the new VM and use foreign mapping17 to load the kernel to the new VM.

14The number of lines of code of the Linux operating system evolved in time from 176,250 for Linux 1.0.0, released in March
1995, to 1,800,847 for Linux 2.2.0, released in January 1999; 3,377,902 for Linux 2.4.0, released in January 2001; and to
5,929,913 for Linux 2.6.0, released in December 2003.
15The TCB is defined as the totality of protection mechanisms within a computer system, including hardware, firmware, and
software, the combination of which is responsible for enforcing a security policy.
16Buffer overflow allows execution of arbitrary code in a privileged mode.
17The foreign mapping mechanism of Xen is used by Dom0 to map arbitrary memory frames of a VM into its page tables.

9.9 Security Risks Posed by a Management OS 293

Domain0 control
interface

Virtualx86
CPU

Virtual
memory Virtual network Virtual block

devices

Xen

Application Application Application

Guest OSGuest OS Guest OS

x86 Hardware

Management OS

Device emulation

Device drivers

Live migration

Administrative tools

FIGURE 9.3

The trusted computing base of a Xen-based environment includes the hardware, Xen, and the management
operating system running in Dom0. The management OS supports administrative tools, live migration, device
drivers, and device emulators. A guest operating system and applications running under it reside in a DomU.

3. Set up the initial page tables for the new VM.
4. Release the foreign mapping on the new VM memory, set up the virtual CPU registers, and launch

the new VM.

A malicious Dom0 can play several nasty tricks at the time when it creates a DomU [215]:

• Refuse to carry out the steps necessary to start the new VM, an action that can be considered a
denial-of-service attack.

• Modify the kernel of the guest operating system in ways that will allow a third party to monitor and
control the execution of applications running under the new VM.

• Undermine the integrity of the new VM by setting the wrong page tables and/or setting up incorrect
virtual CPU registers.

• Refuse to release the foreign mapping and access the memory while the new VM is running.

Let us now turn our attention to the run-time interaction between Dom0 and a DomU. Recall that
Dom0 exposes a set of abstract devices to the guest operating systems using split drivers. The front end
of such a driver is in the DomU and its back end in Dom0, and the two communicate via a ring in shared
memory (see Section 5.8).

In the original implementation of Xen a service running in a DomU sends data to or receives data
from a client located outside the cloud using a network interface in Dom0; it transfers the data to I/O
devices using a device driver in Dom0.18 Therefore, we have to ensure that run-time communication

18Later implementations of Xen offer the pass-through option.

294 CHAPTER 9 Cloud Security

through Dom0 is encrypted. Yet, Transport Layer Security (TLS) does not guarantee that Dom0 cannot
extract cryptographic keys from the memory of the OS and applications running in DomU.

A significant security weakness of Dom0 is that the entire state of the system is maintained by
XenStore (see Section 5.8). A malicious VM can deny access to this critical element of the system to
other VMs; it can also gain access to the memory of a DomU. This brings us to additional requirements
for confidentiality and integrity imposed on Dom0.

Dom0 should be prohibited from using foreign mapping for sharing memory with a DomU unless
a DomU initiates the procedure in response to a hypercall from Dom0. When this happens, Dom0
should be provided with an encrypted copy of the memory pages and of the virtual CPU registers. The
entire process should be closely monitored by the hypervisor, which, after the access, should check the
integrity of the affected DomU.

A virtualization architecture that guarantees confidentiality, integrity, and availability for the TCB of
a Xen-based system is presented in [215]. A secure environment when Dom0 cannot be trusted can only
be ensured if the guest application is able to store, communicate, and process data safely. Thus, the guest
software should have access to secure secondary storage on a remote storage server for keeping sensitive
data and network interfaces to communicate with the user. We also need a secure run-time system.

To implement a secure run-time system we have to intercept and control the hypercalls used for com-
munication between a Dom0 that cannot be trusted and a DomU we want to protect. Hypercalls issued by
Dom0 that do notread orwrite to the memory of a DomU or to its virtual registers should be allowed.
Other hypercalls should be restricted either completely or during specific time windows. For example,
hypercalls used by Dom0 for debugging or for the control of the IOMMU19 should be prohibited.

We cannot restrict some of the hypercalls issued by Dom0, even though they can be harmful to the
security of a DomU. For example, foreign mapping and access to the virtual registers are needed to save
and restore the state of a DomU. We should check the integrity of a DomU after the execution of such
security-critical hypercalls.

New hypercalls are necessary to protect:

• The privacy and integrity of the virtual CPU of a VM. When Dom0 wants to save the state of the
VM, the hypercall should be intercepted and the contents of the virtual CPU registers should be
encrypted. When a DomU is restored, the virtual CPU context should be decrypted and then an
integrity check should be carried out.

• The privacy and integrity of the VM virtual memory. The page table update hypercall should be
intercepted and the page should be encrypted so that Dom0 handles only encrypted pages of the
VM. To guarantee integrity, the hypervisor should calculate a hash of all the memory pages before
they are saved by Dom0. Because a restored DomU may be allocated a different memory region, an
address translation is necessary (see [215]).

• The freshness of the virtual CPU and the memory of the VM. The solution is to add to the hash a
version number.

As expected, the increased level of security and privacy leads to increased overhead. Measurements
reported in [215] show increases by factors of 1.7 to 2.3 for the domain build time, 1.3 to 1.5 for the
domain save time, and 1.7 to 1.9 for the domain restore time.

19An input/output memory management unit (IOMMU) connects main memory with a DMA-capable I/O bus. It maps
device-visible virtual addresses to physical memory addresses and provides memory protection from misbehaving devices.

9.10 Xoar : Breaking the Monolithic Design of the TCB 295

9.10 Xoar : Breaking the monolithic design of the TCB
Xoar is a modified version of Xen that is designed to boost system security [90]. The security model
of Xoar assumes that the system is professionally managed and that privileged access to the system
is granted only to system administrators. The model also assumes that the administrators have neither
financial incentives nor the desire to violate the trust of the user. The security threats come from a guest
VM that could attempt to violate the data integrity or the confidentiality of another guest VM on the
same platform or exploit the code of the guest. Another source of threats are bugs in the initialization
code of the management virtual machine.

Xoar is based on microkernel20 design principles. Xoar modularity makes exposure to risk explicit
and allows guests to configure access to services based on their needs. Modularity allows the designers
of Xoar to reduce the size of the system’s permanent footprint and increase the level of security of
critical components. The ability to record a secure audit log is another critical function of a hypervisor
facilitated by a modular design. The design goals of Xoar are:

• Maintain the functionality provided by Xen.
• Ensure transparency with existing management and VM interfaces.
• Maintain tight control of privileges; each component should only have the privileges required by its

function.
• Minimize the interfaces of all components to reduce the possibility that a component can be used

by an attacker.
• Eliminate sharing and make sharing explicit whenever it cannot be eliminated to allow meaningful

logging and auditing.
• Reduce the opportunity of an attack targeting a system component by limiting the time window

when the component runs.

These design principles aim to break the monolithic TCB design of a Xen-based system. Inevitably,
this strategy has an impact on performance, but the implementation attempted to keep the modularization
overhead to a minimum.

A close analysis shows that booting the system is a complex activity, but the fairly large modules
used during booting are no longer needed once the system is up and running. In Section 5.8 we saw that
XenStore is a critical system component because it maintains the state of the system; thus, it is a prime
candidate for hardening. The ToolStack is only used for management functions and can only be loaded
upon request.

The Xoar system has four types of components: permanent, self-destructing, restarted upon request,
and restarted on timer (see Figure 9.4):

1. Permanent components. XenStore-State maintains all information regarding the state of the system.
2. Components used to boot the system. These components self-destruct before any user VM is started.

Two components discover the hardware configuration of the server, including the PCI drivers, and
then boot the system:

20A microkernel (µ-kernel) supports only the basic functionality of an operating system kernel, including low-level address
space management, thread management, and inter-process communication. Traditional operating system components such
as device drivers, protocol stacks, and file systems are removed from the microkernel and run in the user space.

296 CHAPTER 9 Cloud Security

XenStore-State

Permanent

XenStore-Logic

Guest VM

Self-destructing Restarted on timer

Restarted on
each request

PCIBack

Bootstrapper
NetBack

BlkBack

Toolstack

Builder

Q
E
M
U

XOAR

FIGURE 9.4

Xoar has nine classes of components of four types: permanent, self-destructing, restarted upon request, and
restarted on timer. A guest VM is started using the Toolstack by the Builder, and it is controlled by the
XenStore-Logic. The devices used by the guest VM are emulated by the QEMU component.

• PCIBack. Virtualizes access to PCI bus configuration.
• Bootstrapper. Coordinates booting of the system.

3. Components restarted on each request:

• XenStore-Logic.
• Toolstack. Handles VM management requests, e.g., it requests the Builder to create a new guest

VM in response to a user request.
• Builder. Initiates user VMs.

4. Components restarted on a timer. Two components export physical storage device drivers and the
physical network driver to a guest VM:

• Blk-Back. Exports physical storage device drivers using udev21 rules.
• NetBack. Exports the physical network driver.

Another component, QEMU, is responsible for device emulation. Bootstrapper, PCIBack, and Builder
are the most privileged components, but the first two are destroyed once Xoar is initialized, and the

21udev is the device manager for the Linux kernel.

9.10 Xoar : Breaking the Monolithic Design of the TCB 297

Virtual Machine A

QEMU

BlkBack A NetBack A

Toolstack A

Builder

Virtual Machine B

BlkBack B NetBack B

Toolstack B

Xen

XenStore

XenStore-Logic XenStore-State

FIGURE 9.5

Component sharing between guest VMs in Xoar. Two VMs share only the XenStore components. Each one
has a private version of the BlkBack: NetBack and Toolstack.

Builder is very small; it consists of only 13,000 lines of code. XenStore is broken into two components:
XenStore-Logic and XenStore-State. Access control checks are done by a small monitor module in
XenStore-State. Guest virtual machines share only the Builder, XenStore-Logic, and XenStore-State
(see Figure 9.5).

Users of Xoar are able to only share service VMs with guest VMs that they control. To do so, they
specify a tag on all the devices of their hosted VMs. Auditing is more secure; whenever a VM is created,
deleted, stopped, or restarted by Xoar, the action is recorded in an append-only database on a different
server accessible via a secure channel.

Rebooting provides the means to ensure that a virtual machine is in a known-good state. To reduce
the overhead and the increased start-up time demanded by a reboot, Xoar uses snapshots instead of
rebooting. The service VM snapshots itself when it is ready to service a request; similarly, snapshots of
all components are taken immediately after their initialization and before they start interacting with other
services or guest VMs. Snapshots are implemented using a copy-on-write mechanism22 to preserve any
page about to be modified.

22Copy-on-write (COW) is used by virtual memory operating systems to minimize the overhead of copying the virtual memory
of a process when a process creates a copy of itself. Then the pages in memory that might be modified by the process or by
its copy are marked as COW. When one process modifies the memory, the operating system’s kernel intercepts the operation
and copies the memory, so that changes in one process’s memory are not visible to the other.

298 CHAPTER 9 Cloud Security

9.11 A trusted virtual machine monitor
Now let’s briefly analyze the design of a trusted virtual machine monitor (TVMM) called Terra [131].
The novel ideas of this design are:

• The TVMM should support not only traditional operating systems, by exporting the hardware abstrac-
tion for open-box platforms, but also the abstractions for closed-box platforms discussed in Section
9.5. Note that the VM abstraction for a closed-box platform does not allow the contents of the system
to be either manipulated or inspected by the platform owner.

• An application should be allowed to build its software stack based on its needs. Applications requiring
a very high level of security, e.g., financial applications and electronic voting systems, should run
under a very thin OS supporting only the functionality required by the application and the ability to
boot. At the other end of the spectrum are applications demanding low information assurance23 but
a rich set of OS features; such applications need a commodity operating system.

• Support additional capabilities to enhance system assurance:

• Provide trusted paths from a user to an application. We saw in Section 9.5 that such a path allows
a human user to determine with certainty the identity of the VM it is interacting with and, at the
same time, allows the VM to verify the identity of the human user.

• Support attestation, which is the ability of an application running in a closed box to gain trust
from a remote party by cryptographically identifying itself.

• Provide airtight isolation guarantees for the TVMM by denying the platform administrator root
access.

The management VM is selected by the owner of the platform but makes a distinction between a
platform owner and a platform user. The management VM formulates limits to the number of guest
VMs running on the platform, denies access to guest VMs that are deemed unsuitable to run, and grants
access to I/O devices to running VMs and limits their CPU, memory, and disk usage. Guest VMs expose
a raw hardware interface, including virtual network interfaces to virtual devices. The TVMM runs at the
highest privilege level and is secure even from the actions of the platform owner; it provides application
developers with the semantics of a closed-box platform.

A significant challenge to the security of a TVMM comes from the device drivers used by different
VMs running on the platform. Device drivers are large or very large software components, especially
the drivers for high-end wireless cards and video cards. There is also a large variety of such drivers,
many hastily written to accommodate new hardware features. Typically, the device drivers are the
lowest-quality software components found in the kernel of an operating system; thus, they pose the
highest security risks. To protect a TVMM, the device drivers should not be allowed to access sensitive
information and their memory access should be limited by different hardware protection mechanisms.
Malicious I/O devices can use different hardware capabilities, such as DMA, to modify the kernel.

23Information assurance (IA) involves managing the risks related to the use, processing, storage, and transmission of informa-
tion, as well as protecting the systems and processes used for those purposes. IA implies protection of the integrity, availability,
authenticity, nonrepudiation, and confidentiality of the application data.

9.13 Exercises and Problems 299

9.12 Further reading
The Cloud Security Alliance (CSA) is an organization with more than 100 corporate members. It aims
to address all aspects of cloud security and serve as a cloud security standards incubator. The reports,
available from the organization’s Web site, are periodically updated; the original report was published
in 2009 [96] and subsequent reports followed ([97,98]).

A seminal paper on the negative implications of virtualization on system security, “When Virtual
Is Harder Than Real: Security Challenges in Virtual Machine-Based Computing Environments,” by
Garfinkel and Rosenblum [132], was published in 2005, followed by another one that reaches similar
conclusions [297].

A 2010 paper [147] presents a taxonomy of attacks on computer clouds, and [101] covers manage-
ment of the security services life cycle. Security issues vary depending on the cloud model, as discussed
in [273]. The privacy impact on cloud computing is the topic of [345]. A 2011 book [373] gives a com-
prehensive look at cloud security. Privacy and protection of personal data in the European Community
is discussed in a document available at ec.europa.eu/justice/policies/privacy.

One paper [28] analyzes the inadequacies of current risk controls for a cloud. Intercloud security
is the theme of [48]. Secure collaborations are discussed in [51]. Another paper [216] presents an
approach to secure VM execution under untrusted management OS. The social impact of privacy in
cloud computing is analyzed in [118]. An anonymous access control scheme is presented in [182].

An empirical study into the security exposure to hosts of hostile virtualized environments can be
found at taviso.decsystem.org/virtsec.pdf. A model-based security-testing approach to
cloud computing is presented in [384]. Several other relevant aspects of security are covered in [152,
268, 341].

9.13 Exercises and problems
Problem 1. Identify the main security threats for the SaaS cloud delivery model on a public cloud.

Discuss the different aspects of these threats on a public cloud vis-à-vis the threats posed
to similar services provided by a traditional service-oriented architecture running on a
private infrastructure.

Problem 2. Analyze how the six attack surfaces discussed in Section 9.1 and illustrated in Figure 9.1
apply to the SaaS, PaaS, and IaaS cloud delivery models.

Problem 3. Analyze Amazon’s privacy policies and design a service-level agreement you would sign
if you were to process confidential data using AWS.

Problem 4. Analyze the implications of the lack of trusted paths in commodity operating systems and
give one or more examples showing the effects of this deficiency. Analyze the implications
of the two-level security model of commodity operating systems.

Problem 5. Compare the benefits and the potential problems due to virtualization on public, private,
and hybrid clouds.

300 CHAPTER 9 Cloud Security

Problem 6. Read [38] and discuss the measures taken by Amazon to address the problems posed by
shared images available from AWS. Would it be useful to have a cloud service to analyze
images and sign them before being listed and made available to the general public?

Problem 7. Analyze the risks posed by foreign mapping and the solution adopted by Xoar. What is
the security risk posed by XenStore?

Problem 8. Read [90] and discuss the performance of the system. What obstacles to its adoption by
the providers of IaaS services can you foresee?

Problem 9. Discuss the impact of international agreements regarding privacy laws on cloud computing.

10
CHAPTER

Complex Systems and
Self-Organization

This chapter emphasizes the need to adopt a systemic approach to the engineering of modern computing
and communication systems. Such an approach is critical to the future of large-scale systems such as
clouds. A systemic approach is also critical to the development of other complex systems such as
cyberphysical and sociotechnical systems, which are increasingly important in the modern computing
landscape, along with computer clouds.

Complex systems exhibit different patterns of behavior than traditional systems and require new
design principles based on a deeper understanding of the physical properties of their components and
of the manner in which they interact with one another and with the environment. The new thinking in
complex system design has to be an ab-initio concern rather than an afterthought.

10.1 Complex systems
A March 16, 2012, posting on ZDNet reveals that EC2 was made up of 454,600 servers; if we add the
number of servers supporting other AWS services, the total number of Amazon systems dedicated to
cloud computing is much larger. An unofficial estimate puts the number of servers used by Google in
January 2012 close to 1.8 million; this number is expected to be close to 2.4 million by early 2013
[289].

The complexity of such systems is unquestionable and raises questions such as: What are the generic
properties of complex systems? How can we manage such systems? Do we have to consider radically new
ideas, such as self-management and self-repair, for future clouds consisting of millions of components?
Should we migrate from a strictly deterministic view of such systems to a nondeterministic one when
the desirable properties of a system are statistically assured? These are some of the questions examined
in this chapter.

When we think about complex systems, the human brain comes immediately to mind; the number
of neurons in the human brain is estimated to be between 80 and 120 billion. Technology systems with
a very large number of components, such as the space shuttle,1 a modern microprocessor with several

1“The main elements of the space shuttle . . . are assembled from more than 2.5 million parts, 230 miles of wire, 1,040
valves and 1,440 circuit breakers” (Columbia Accident Investigation Board, Report, vol. I, pp. 14, August 2003, at
www.nasa.gov/columbia/caib/html/report.html).

Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00010-5
© 2013 Elsevier Inc. All rights reserved.

301

302 CHAPTER 10 Complex Systems and Self-Organization

million transistors,2 or the Internet with some 800 million hosts as of January 2010, are examples of
complex man-made systems.

A very large number of interaction channels among the components of a system is another defining
characteristic of a complex system. Indeed, the behavior of any system cannot be explained without pre-
cise knowledge of the interactions among its components. Even systems with a relatively small number
of components can be complex; for example, the complexity of interactions between the gravitational
fields of the planets make our solar system a very complex one.

Discovering all possible interactions among the components of a system is a formidable task. Such
an effort is undertaken whenever we need to make progress in our understanding of the behavior of a
system we engineer or of the physical world surrounding us. Sometimes we are forced to discover such
interactions to build better systems. For example, the investigations following the failure of an aircraft,
the space shuttle, or any other system aim to discover the interaction channels that contributed to the
failure.

Predicting all possible interactions among the components of a system during the design process
is an even more daunting task. A good illustration of this problem is the so-called “death grip” effect
manifested by a smartphone released not long ago. The signal suffered a significant attenuation when
the device was gripped in a certain way, because the gain of the antenna embedded in the smartphone’s
case was drastically reduced. In retrospect, such an effect should have been foreseen, but during the
design process it was either overlooked or considered very unlikely.

Discovery of the interactions among the basic building blocks of a physical system is required for
the advancement of our knowledge. A major step in understanding the human brain is the development
of a comprehensive map of neural connections in the brain. The goal of the Human Connectome Project
sponsored by the National Institutes of Health (NIH) is to build a network map of the human brain in
healthy individuals.

Can we increase the number of components of a system while limiting the number of interaction paths
among its components? Though there is no positive answer to this question for most complex systems, a
solution applicable in the case of some computing and communication systems exists. In Section 7.10 we
showed that systems interconnected by scale-free networks have this highly desirable property. Because
the degrees of the nodes enjoy a power-law distribution, the number of highly connected components is
very small, whereas the vast majority of components have one or a few connections. Thus, scalability
of large-scale systems can, in principle, be assured.

Interaction with the environment is an important dimension of system complexity; unfortunately
this dimension is often ignored. The more complex the interactions with the environment, the more
difficult it is to satisfy the often contradictory requirements of a dynamic environment, and the more
complex the system becomes. Moreover, changes in a dynamic environment are difficult to predict and
to accommodate in the original design of a system. For example, a system might not be able to perform
additional checks when the environment acquires new capabilities to challenge the system’s integrity.

Whenever we simulate a system, the complexity of the simulation increases with the number of
components and with the number of interaction paths among them. Indeed, the simulation program has

2The number of transistors for several processors announced in 2011 are as follows: 2.5×106 for the 10-core Xeon Westmere-
EX produced by Intel, 4.3 × 106 for the Tahiti GPU of Advanced Micro Devices (AMD), and 6.8 × 106 for the Virtex-7
FPGA of Xilinx.

10.2 Abstraction and Physical Reality 303

to describe the properties of each component as well as the effect of each interaction on all compo-
nents involved. Symmetry and regularity help decrease the complexity of the simulation as multiple
components and multiple interactions share the same description; irregularities have the opposite effect.
The length of the description of all the system components is captured by the concept of Kolmogorov
complexity, discussed in Section 10.3.

Symmetry and regularity of computing and communication systems imply homogeneity; the hard-
ware and the software of individual components are identical or very similar. Large-scale systems
designed as collections of homogeneous systems are easier to assemble, their properties are better
understood, and they are more effectively managed than collections of heterogeneous systems. In
Section 1.3 we cited the hardware and software homogeneity of a cloud as one of the reasons we believe
that cloud computing could be successful, whereas heterogeneous large-scale distributed computing
systems could not be.

Because we want to increase the versatility and usefulness, as well as the performance of man-
made systems, we add new features and we increase the complexity of the system. This is especially
true whenever we try to accommodate changes that were not envisioned by the original design. For
example, the Internet was originally designed as a data network based on a best-effort model where
routers could freely discard packets. Major changes were necessary to support data streaming and
other types of communication with real-time delivery constraints when the retransmission of discarded
packets could not be tolerated. These changes have increased the complexity of the Internet. We also
saw in Chapter 6 that the management of cloud resources increases in complexity when we attempt to
mix best-effort applications with applications that have soft real-time constraints and when we add to
the mix applications with real-time constraints.

10.2 Abstraction and physical reality
Abstraction is one of the means to cope with system complexity, but abstractions could drive us away
from physical reality. We should not forget that our objective is to build systems that store, transform,
and transport information and that the physical properties of such systems must be well understood.

Three fundamental abstractions are sufficient to describe all possible elements of computing and
communication systems: storage, interpreter, and communication channel. An interpreter is an active
element of a system that transforms information; we distinguish hardware interpreters, such as a pro-
cessor or a disk controller, from software interpreters, such as scripting languages and text-processing
systems. In all the possible embodiments of this abstraction, the interpreter, we recognize three elements
[312]: (i) an action reference, which tells the interpreter where to find the next action; (ii) a repertoire,
which defines the set of actions the interpreter is able to perform; and (iii) an environment reference,
which points to the environment and the state in which the interpreter should be when executing the next
action. The physical properties of actual embodiments of an interpreter span a very large spectrum; for
example, when we design an application for a mobile device, a major concern in selecting the processor
should be its power consumption, whereas the main concern for the browser should be the size of the
screen.

Information has a physical support, and each one of these three processes acts on a property of that
physical system. For example, to transport information from a sender to a receiver, we can encode it in

304 CHAPTER 10 Complex Systems and Self-Organization

the amplitude, the frequency, or the phase of electromagnetic waves, and we have to well understand
the interaction of the electromagnetic waves with the communication media. Indeed, if we want to
have error-free communication channels we have to determine the error rate and use error-correcting or
error-detecting code designed to cope with the error rate.

We have to maintain a delicate balance between the abstractions that are critical to the development
of algorithms and the physical characteristics of the systems used to store, transform, and transport
information. This balance has shifted in recent years due to the widespread use of cyberphysical systems.
In such systems there is a tight relationship between the computational elements and the physical
elements. Embedded systems are ubiquitous, and sensors allow them to react to the properties of the
physical systems they control and, at the same time, to monitor their own properties and adapt to changes
in the environment.

One dimension of the design of modern complex systems is related to their operational environment.
The recently introduced concept of sociotechnical systems (see, for example, [329]) captures the fact
that the design of modern systems should consider not only the technological aspect but also the
environment – more precisely, the humans who use a system.

From this informal discussion of several attributes of complex systems we move to quantitative
measures of system complexity, the topic of the next section.

10.3 Quantifying complexity
Abstract questions about systems consisting of an ensemble of components have preoccupied the minds
of humans for millennia. For example, the Greek philosopher Aristotle stated that “. . . the whole is
something over and above its parts, and not just the sum of them all.” In The Republic, fellow Greek
philosopher Plato introduced the concept of “level of knowledge,” ranging from total ignorance to total
knowledge. “True knowledge” exists only if a foundation of axioms or a priori knowledge exists [172],
and this cannot be the case for complex systems.

At first we can turn for guidance on how to measure system complexity to thermodynamics, a
branch of physics concerned with heat and its relation with energy and work. Thermodynamics defines
macroscopic properties such as temperature, pressure, and entropy to characterize large assemblies of
microscopic particles, e.g., gases, and establishes laws governing the behavior of such systems. The
analogy to large-scale systems is inescapable; indeed, we are interested in high-level properties such
as reliability; performance measured by throughput and response time, security, and elasticity; and the
ability to respond to a sudden increase of the load of very large collections of servers, each one powered
by many processors, each processor with millions of transistors. From the “microscopic” properties of
these elements we have to estimate the “macroscopic” properties of the system.

The concepts of thermodynamic entropy, von Neumann entropy, and Shannon entropy are related to
the number of states of a system; thus, they reflect to some extent the system’s complexity [92]. The
thermodynamic entropy of a microscopic system, e.g., N molecules of gas, is

S = kB ln �, (10.1)

with kB the Boltzmann’s constant and � the number of microstates of the system. When the N molecules
are grouped together in m macrostates depending on their energy, then the number of bits required to

10.3 Quantifying Complexity 305

label the individual microstates is
Q = H(p1, p2, . . . , pm), (10.2)

with H(p1, p2, . . . , pm) the Shannon entropy of a system with m states. If ni is the number of molecules
in state i , then pi = ni/N is the probability of the system being in state i .

In turn, the von Neumann entropy of a quantum system with the density matrix ρ

S(ρ) = −tr[ρ log ρ] (10.3)

is equal to the Shannon entropy if the system is prepared in a maximally mixed state, a state where all
pure states are equally likely.

A measure of complexity is the relative predictive efficiency, denoted by e and defined as

e = E/C (10.4)

with E the excess entropy and C the statistical complexity [95]. The excess entropy measures the
complexity of the stochastic process and can be regarded as the fraction of historical information about
the process that allows us to predict the future behavior of that process. The statistical complexity reflects
the size of the model of the system at a certain level of abstraction.

The scale of organization considered by an external observer plays a critical role in assessing the
relative predictive efficiency. For example, at the microscopic level the calculation of e for a volume of
gas requires very complex molecular dynamic computations in order to accurately predict the excess
entropy; both E and C are very high and the predictive efficiency is low. On the other hand, at the
macroscopic level the relationship among the pressure P , the volume V , and the temperature T is a
very simple PV = n RT , with n the number of moles of gas and R the universal gas constant. In this
case, E maintains a high value, but now C is low and the predictive efficiency E/C is large.

Physical systems in equilibrium display their most complex behavior at critical points. In thermody-
namics a critical point specifies the conditions of temperature and pressure at which a phase boundary,
e.g., between liquid and gas, ceases to exist. The time to reach equilibrium becomes very high at critical
points, a phenomenon called critical slowing. Wolpert and Macready [377] argue that self-similarity
can be used to quantify complexity; the patterns exhibited by complex systems at different scales are
very different, whereas the patterns exhibited by simple systems such as gases and crystals do not vary
significantly from one scale to another.

As discussed earlier, we could use the complexity of a program that simulates the system as a
measure of complexity of the system. This will reflect not only the number of states but also the pattern
of transitions among states. This idea has its own limitations because, generally, in our simulations we
use approximate models of a system rather than exact ones.

This measure of complexity is consistent with the concept of depth, defined as the number of com-
putational steps needed to simulate a system’s state. The author of [225] argues that the emergence
of complexity requires a long history, but we need a measure stricter than physical time to reflect this
history. The depth reflects not how long the system remains in equilibrium but how many steps are
necessary to reach equilibrium following some efficient process. The rate of change of the system state
and the communication time do not reflect the complexity of a system. Indeed, two rotating structures
involving very different physical processes, a hurricane and a spiral celestial galaxy, are at the limit of

306 CHAPTER 10 Complex Systems and Self-Organization

today’s realistic computer simulations, thus, are of similar depth and, consequently, of similar complex-
ity. Yet, galaxy formation occurs at a scale of millions of light years and is bounded by communication
at the speed of light, whereas the time for hurricane formation is measured in days, the atmospheric
disturbances propagate more slowly, and the scale is only hundreds of kilometers.

Complexity could be related to the description of a system and may consist of structural, functional,
and, possibly, other important properties of the system. The question of how to measure the descriptive
complexity of an object was addressed by Kolmogorov [198] and, independently, by Solomonoff [328]
and Chaitin [69]. An application of Kolmogorov complexity to the characterization of scheduling on a
computational grid is discussed in [229].

The Kolmogorov complexity KV (s) of the string s with respect to the universal computer V is defined
as the minimal length over all programs ProgV that print s and halt

KV (s) = min[Length(s)] over all Prog: V(ProgV) = s. (10.5)

The intuition behind Kolmogorov complexity is to provide the shortest possible description of any
object or phenomenon, and its roots can be traced back to wisdom formulated centuries ago. “Nunquam
ponenda est pluritas sine necesitate,” the famous principle formulated by William of Ockham (1290–
1349), states; it means that an explanation should not be extended beyond what is necessary [351].
Bertrand Russell translates this as “It is vain to do with more what can be done with fewer.”

10.4 Emergence and self-organization
Two most important concepts for understanding complex systems are emergence and self-organization.
Emergence lacks a clear and widely accepted definition, but it is generally understood as a property of a
system that is not predictable from the properties of individual system components. There is a continuum
of emergence spanning multiple scales of organization. Halley and Winkler argue that simple emergence
occurs in systems at or near thermodynamic equilibrium, whereas complex emergence occurs only in
nonlinear systems driven far from equilibrium by the input of matter or energy [153].

Physical phenomena that do not manifest themselves at microscopic scales but occur at macroscopic
scale are manifestations of emergence. For example, temperature is a manifestation of the microscopic
behavior of large ensembles of particles. For such systems at equilibrium, the temperature is proportional
with the average kinetic energy per degree of freedom. This is not true for ensembles of a small number
of particles. Even the laws of classical mechanics can be viewed as limiting cases of quantum mechanics
applied to large objects.

Emergence could be critical for complex systems such as financial systems, the air-traffic system, and
the power grid. The May 6, 2010, event in which the Dow Jones Industrial Average dropped 600 points
in a short period of time is a manifestation of emergence. The cause of this failure of the trading systems
was attributed to interactions of trading systems developed independently and owned by organizations
that work together, but their actions were motivated by self-interest.

A recent paper [329] points out that dynamic coalitions of software-intensive systems used for
financial activities pose serious challenges because there is no central authority and there are no means
to control the behavior of the individual trading systems. The failures of the power grid (for example,
the Northeastern U.S. blackout of 2003) can also be attributed to emergence; indeed, during the first few

10.4 Emergence and Self-Organization 307

Table 10.1 Attributes associated with self-organization and complexity.

Simple Systems; No Self-Organization Complex Systems; Self-Organization

Mostly linear Nonlinear
Close to equilibrium Far from equilibrium
Tractable at component level Intractable at component level
One or few scales of organization Many scales of organization
Similar patterns at different scales Different patterns at different scales
Do not require a long history Require a long history
Simple emergence Complex emergence
Unaffected by phase transitions Affected by phase transitions
Limited scalability Scale-free

hours of this event, the cause of the failure could not be identified due to the large number of independent
systems involved. Only later was it established that multiple causes, including the deregulation of the
electricity market and the inadequacy of the transmission lines of the power grid, contributed to this
failure.

Informally, self-organization means synergetic activities of elements, when no single element acts
as a coordinator and the global patterns of behavior are distributed [137,320]. The intuitive meaning
of self-organization is captured by this observation of mathematician Alan Turing [355]: “Global order
can arise from local interactions.”

Self-organization is prevalent in nature; for example, in chemistry this process is responsible for
molecular self-assembly, for self-assembly of monolayers, for the formation of liquid and colloidal
crystals, and in many other instances. Spontaneous folding of proteins and other biomacromolecules,
the formation of lipid bilayer membranes, the flocking behavior of various species, the creation of
structures by social animals – all are manifestations of self-organization of biological systems.

Inspired by biological systems, self-organization was proposed for the organization of different types
of computing and communication systems [169,231], including sensor networks, space exploration
[167], or even economic systems [200].

The generic attributes of complex systems exhibiting self-organization are summarized in Table 10.1.
Nonlinearity of physical systems used to build computing and communication systems has countless
manifestations and consequences. For example, when the clock rate of a microprocessor doubles, the
power dissipation increases from 22 = 4 to 23 = 8 times, depending of the solid-state technology
used. This means that the heat-removal system of much faster microprocessors has to use a different
technology when we double the speed. This nonlinearity is ultimately the reason that in the last few
years we have seen the clock rate of general-purpose microprocessors increasing only slightly,3 while
the increased number of transistors postulated by Moore’s law, allow companies such as Intel and
AMD (Advanced Micro Devices) to build multicore chips. This example also illustrates the so-called
incommensurate scaling, another attribute of complex systems. Incommensurate scaling means that,

3In 1975, the Intel 8080 had a clock rate of 2 MHz. The HP PA-7100, a RISC microprocessor released in 1992, and the Intel
P5 Pentium, released in 1995, had a 100 MHz clock rate. In 2002 the Intel Pentium 4 had a clock rate of 3 GHz.

308 CHAPTER 10 Complex Systems and Self-Organization

when the size of the system or one of its important attributes such as speed increases, different system
components are subject to different scaling rules.

The fact that computing and communication systems operate far from equilibrium is clearly illustrated
by the traffic carried by the Internet. There are patterns of traffic specific to the time of the day, but
there is no steady-state. The many scales of the organization and the fact that there are different patterns
at different scales is also clear in the Internet, which is a collection of networks where, in turn, each
network is also a collection of smaller networks, each one with its own specific traffic patterns.

The concept of phase transition comes from thermodynamics and describes the transformation, often
discontinuous, of a system from one phase or state to another, as a result of a change in the environment.
Examples of phase transitions are freezing, which is a transition from liquid to solid, and its reverse,
melting; deposition, which is a transition from gas to solid, and its reverse, sublimation; and ionization,
which is a transition from gas to plasma, and its reverse, recombination.

Phase transitions can occur in computing and communication systems due to avalanche phenomena,
when the process designed to eliminate the cause of an undesirable behavior leads to a further deterio-
ration of the system state. A typical example is thrashing due to competition among several memory-
intensive processes, which leads to excessive page faults. Another example is acute congestion, which
can cause a total collapse of a network; the routers start dropping packets and, unless congestion avoid-
ance and congestion control means are in place and operate effectively, the load increases as senders
retransmit packets and the congestion increases. To prevent such phenomena, some form of negative
feedback has to be built into the system.

A defining attribute of self-organization is scalability – the ability of the system to grow with-
out affecting its global function(s). Complex systems, encountered in nature or man-made, exhibit an
intriguing property: They enjoy a scale-free organization [39,40]. This property reflects one of the few
attributes of self-organization that can be precisely quantified. The scale-free organization can best be
explained in terms of the network model of the system, a random graph [53] with vertices representing
the entities and the links representing the relationships among them. In a scale-free organization, the
probability P(m) that a vertex interacts with m other vertices decays as a power law, P(m) ≈ m−γ ,
with γ a real number, regardless of the type and function of the system, the identity of its constituents,
and the relationships among them.

Empirical data available for social networks, power grids, the Web, or the citation of scientific papers
confirm this trend. As an example of a social network, consider a collaborative graph of movie actors on
which links are present if two actors were ever cast in the same movie; in this case, γ ≈ 2.3. The power
grid of the Western United States has some 5,000 vertices representing power-generating stations, and in
this case, γ ≈ 4. For the World Wide Web the exponent is γ ≈ 2.1; this means that the probability that m
pages point to one page is P(m) ≈ m−2.1 [40]. Recent studies indicate thatγ ≈ 3 for the citation of scien-
tific papers. The larger the network, the closer a power law with γ ≈ 3 approximates the distribution [39].

10.5 Composability bounds and scalability
Nature creates complex systems from simple components. For example, a vast variety of proteins are
linear chains assembled from 21 amino acids, the building blocks of proteins. Twenty amino acids are
naturally incorporated into polypeptides and are encoded in the genetic code.

10.5 Composability Bounds and Scalability 309

Imitating nature, man-made systems are assembled from subassemblies; in turn, a subassembly is
made from several modules, each of which could consist of submodules, and so on. Composability
has natural bounds imposed by the laws of physics, as we saw when discussing heat dissipation of
solid-state devices. As the number of components increases, the complexity of a system also increases
for the reasons discussed in Section 10.1.

The limits of composability can be reached because new physical phenomena could affect the sys-
tem when the physical size of the individual components changes. A recent paper with the sugges-
tive title, “When Every Atom Counts” [245], discusses the fact that even the most modern solid-
state fabrication facilities cannot produce chips with consistent properties. The percentage of defec-
tive or substandard chips has been constantly increasing as the components have become smaller and
smaller.

The lack of consistency in the manufacturing process of solid-state devices is attributed to the increas-
ingly small size of the physical components of a chip. This problem is identified by the International
Technology Roadmap for Semiconductors as “a red brick,” a problem without a clear solution – a wall
that could prevent further progress. Chip consistency is no longer feasible because the transistors and
“wires” on a chip are so small that random differences in the placement of an atom can have a devastating
effect, e.g., can increase power consumption by an order of magnitude and slow the chip by as much
as 30%.

As the features become smaller and smaller, the range of the threshold voltage – the voltage needed
to turn a transistor on and off – has been widening, and many transistors have this threshold voltage
at or near zero. Thus, they cannot operate as switches. Although the range for 28 nm technology was
approximately between +0.01 and +0.4 V, the range for 20 nm technology is between −0.05 and
+0.45 V, and the range becomes even wider, from −0.18 to +0.55, for 14 nm technology.

There are physical bounds on the composition of analog systems; noise accumulation, heat dissi-
pation, cross-talk, the interference of signals on multiple communication channels, and several other
factors limit the number of components of an analog system. Digital systems have more distant bounds,
but composability is still limited by physical laws.

There are virtually no bounds on composition of digital computing and communication systems
controlled by software. The Internet is a network of networks and a prime example of composability
with distant bounds. Computer clouds are another example; a cloud is composed of a very large number
of servers and interconnects with each server made up of multiple processors and each processor made
up of multiple cores. Software is the ingredient that pushes the composability bounds and liberates
computer and communication systems from the limits imposed by physical laws.

In the physical world the laws that are valid at one scale break down at a different scale, e.g., the
laws of classical mechanics are replaced at atomic and subatomic scales by quantum mechanics. Thus,
we should not be surprised that scale really matters in the design of computing and communication
systems. Indeed, architectures, algorithms, and policies that work well for systems with a small number
of components very seldom scale up.

For example, many computer clusters have a front-end that acts as the nerve center of a system,
manages communication with the outside world, monitors the entire system, and supports system
administration and software maintenance. A computer cloud has multiple nerve centers of this kind, and
new algorithms to support collaboration among these centers must be developed. Scheduling algorithms
that work well within the confines of a single system cannot be extended to collections of autonomous

310 CHAPTER 10 Complex Systems and Self-Organization

systems where each system manages local resources; in this case, as in the previous example, entities
must collaborate with one another, and this requires communication and consensus.

Another manifestation of this phenomenon is in the vulnerabilities of large-scale distributed systems.
The implementation of Google BigTable revealed that many distributed protocols designed to protect
against network partitions and fail-stop are unable to cope with failures due to scale [73]. Memory and
network corruption, extended and asymmetric network partitions, systems that fail to respond, and large
clock skews occur with increased frequency in a large-scale system and interact with one another in a
manner that greatly affects overall system availability.

Scaling has other dimensions than just the number of components. The space plays an important
role; the communication latency is small when the component systems are clustered together within a
small area and allows us to implement efficient algorithms for global decision making, e.g., consensus
algorithms. When, for the reasons discussed in Section 1.6, the data centers of a cloud provider are
distributed over a large geographic area, transactional database systems are of little use for most online
transaction-oriented systems, and a new type of data store must be introduced in the computational
ecosystem, as shown in Section 8.8.

Societal scaling means that a service is used by a very large segment of the population and/or is
a critical element of the infrastructure. There is no better example to illustrate how societal scaling
affects system complexity than communication supported by the Internet. The infrastructure supporting
the service must be highly available. A consequence of redundancy and of the measures to maintain
consistency is increased system complexity.

At the same time, the popularity of the service demands simple and intuitive means to access the
infrastructure. Again, system complexity increases due to the need to hide the intricate mechanisms
from a layperson who has little understanding of the technology. Another consequence of the desire
to design wireless devices that operate efficiently in terms of power consumption and present the user
with a simple interface and few choices and satisfy a host of other popular attributes is an increased
vulnerability to attacks from a few individuals who can discover and exploit system weaknesses. Few
smartphone and tablet users understand the security risks of wireless communication.

10.6 Modularity, layering, and hierarchy
Modularity, layering, and hierarchy represent some of the means to cope with the complexity of a
system. Modularity is a technique to build a complex system from a set of components built and tested
independently. A strong requirement for modularity is to define very clearly the interfaces between
modules and enable the modules to work together.

Modularity has been used extensively since the industrial revolution for building every imaginable
product, from weaving looms to steam engines, watches to automobiles, and electronic devices to
airplanes. Individual modules are often made of subassemblies; for example, the power train of a car
includes the engine assembly, the gear box, and the transmission.

Modularity can reduce costs for manufacturers and consumers. The same module may be used by a
manufacturer in multiple products; to repair a defective product a consumer only needs to replace the
module causing the malfunction rather than the entire product. Modularity encourages specialization
because individual modules can be developed by experts with deep understanding of a particular field.

10.6 Modularity, Layering, and Hierarchy 311

It also supports innovation, allowing a module to be replaced with a better one without affecting the
rest of the system.

Layering and hierarchy have been present in social systems since ancient times. For example, the
Spartan Constitution, called Politeia, described a Dorian society based on a rigidly layered social
system and a strong military. Nowadays, in a modern society, we are surrounded by organizations that
are structured hierarchically. We have to recognize that layering and hierarchical organization have their
own problems, could negatively affect society, impose a rigid structure and affect social interactions,
increase the overhead of activities, and prevent the system from acting promptly when such actions are
necessary.

Layering demands modularity because each layer fulfills a well-defined function, but the commu-
nication patterns in the case of layering are more restrictive. A layer is expected to communicate only
with adjacent layers. This restriction, the limitation of communication patterns, clearly reduces the
complexity of a system and makes it easier to understand its behavior.

It is no surprise that modularity, layering, and hierarchy are critical to computer and communication
systems. Since the early days of computing, large programs have been split into modules, each with a
well-defined functionality. Modules with related functionalities have then been grouped together into
numerical, graphical, statistical, and many other types of libraries.

Layering helps us deal with complicated problems when we have to separate concerns that prevent
us from making optimal design decisions. To do so, we define layers that address each concern and
design the clear interfaces between the layers.

Probably the best example is layering of communication protocols. In this case it was recognized
that we have to accommodate a variety of physical communication channels that carry electromagnetic,
optical, and acoustic signals; thus, we need a physical layer. The next concern is how to transport bits,
not signals, between two points joined to one another by a communication channel; thus, the need for
a data link layer. Next we decided that we need networks with multiple intermediate nodes when bits
have to traverse a chain of intermediate nodes from a source to the destination; the concern here is how
to forward the bits from one intermediate node to the next, so we had to introduce the network layer.
Then we recognized that the source and the recipient of information are in fact outside the network and
they are not interested in how the information crosses the network, but we want the information to reach
its destination unaltered; the transport layer was then deemed necessary. Finally, the information sent
and received has a meaning only in the context of an application; thus, we needed an application layer.

Layering could prevent some optimizations; for example, cross-layer communication (communica-
tion between non-adjacent layers) could allow wireless applications to take advantage of information
available at the Media Access Control (MAC) sublayer of the data link layer. This example shows that
layering gives us insight as to where to place the basic mechanisms for error control, flow control, and
congestion control on the protocol stack.

An interesting question is whether a layered cloud architecture that has practical implications for
the future development of computing clouds could be implemented. One could argue that it may be
too early for such an endeavor, that we need time to fully understand how to better organize a cloud
infrastructure, and we need to gather data to support the advantages of one approach over another.

On the other hand, there are other systems in which it is difficult to envision a layered organization
because of the complexity of the interaction between the individual modules. Consider, for example,
an operating system that has a set of well-defined functional components:

312 CHAPTER 10 Complex Systems and Self-Organization

• The processor management subsystem, responsible for processor virtualization, scheduling, interrupt
handling, and execution of privileged operations and system calls.

• The virtual memory management subsystem, responsible for translating virtual addresses to physical
addresses.

• The multilevel memory management subsystem, responsible for transferring storage blocks between
different memory levels, most commonly between primary and secondary storage.

• The I/O subsystem, responsible for transferring data between the primary memory and the I/O
devices.

• The networking subsystem, responsible for network communication.

The processor management interacts with all other subsystems. There are also multiple interactions
between the other subsystems; therefore, it seems unlikely that a layered organization is feasible in this
case.

10.7 More on the complexity of computing and communication systems
In addition to the laws of physics, several other factors limit in practice the complexity of man-made
systems; among them are cost, reliability, performance, and functionality. Assembling reliable systems
from unreliable components is quite challenging; as the number of components grows, the mean time
to failure (MTTF) of the entire system becomes smaller and smaller. As the number of components
increases, so does the complexity of coordination; then the fraction of system resources dedicated to
coordination increases and limits the performance.

Modularity allows us to develop individual system components independently and then assemble
them into more complex structures. In many instances the laws of physics place a limit on the composition
process; for example, the number of gates in a solid-state circuit is limited by the ability to remove the
heat generated during switching. A new technology could extend these limits until other physical laws,
e.g., the finite speed of light, expose a new limit.

Computing and communication systems have a unique characteristic: the physical limitations of
composability can be pushed further and further as the software allows us to overcome the physical
limitations of the hardware. For example, though there are limits on the number of cores on a chip, the
software allows us to build multiprocessor systems in which each processor has multiple cores. Such
systems can then be interconnected using networking hardware under the control of another layer of
software to form a computer cluster; in turn, multiple clusters can be interconnected to build a computer
cloud controlled by the next layer of software, and so on.

Our limited understanding of system complexity and the highly abstract concepts developed in the
context of natural sciences do not lend themselves to straightforward development of design principles
for modern computing and communication systems. Nevertheless, the physical nature and the physical
properties of computing and communication systems must be well understood because the system
design must obey the laws of physics.

Some of the specific factors affecting the complexity of computing and communication systems
are [2]:

10.7 More on the Complexity of Computing and Communication Systems 313

Complexity of computing
and communication systems

New
components

New
applications

Interconnectivity +
mobility, embedded

devices

Physical
constraints

Larger segment of
population using

the systems

Optimization of
resource

consumption

Timing
Constraints

FIGURE 10.1

Factors contributing to the complexity of modern computing and communication systems. The slim black
arrows show a causality relation between individual factors; for example, physical constraints demand opti-
mization of resource consumption.

• The behavior of the systems is controlled by phenomena that occur at multiple scales or levels. As
levels form or disintegrate, phase transitions and/or chaotic phenomena may occur.

• Systems have no predefined bottom level; it is never known when a lower-level phenomenon will
affect how the system works.

• Abstractions of the system that are useful for a particular aspect of the design may have unwanted
consequences at another level.

• Systems are entangled with their environment. A system depends on its environment for its persis-
tence; therefore, it is far from equilibrium. The environment is man-made and the selection required
by the evolution can either result in innovation or generate unintended consequences, or both.

• Systems are expected to function simultaneously as individual systems and as groups of systems
(systems of systems).

• Typically, computing and communication systems are both deployed and under development at the
same time.

A number of factors contribute to the complexity of modern computing and communication systems,
as shown in Figure 10.1. Some of these factors are:

• The rapid pace of technological developments and the availability of relatively cheap and efficient
new system components such as multicore processors, sensors, retina displays, and high-density
storage devices.

• The development of new applications that take advantage of the new technological developments.
• The ubiquitous use of the systems in virtually every area of human endeavor, which, in turn, demands

a faster pace for hardware and software development.
• The need for interconnectivity and the support for mobility.
• The need to optimize the resource consumption.
• The constraints imposed by the laws of physics, such as heat dissipation and finite speed of light.

314 CHAPTER 10 Complex Systems and Self-Organization

Each one of these factors could have side effects. For example, the very large number of transistors
on a chip allows hiding of hardware trojan horses (HTH),4 malignant circuits that are extremely hard
to detect. Wireless communication creates new challenges for system security, and increased security
demands more complex software.

These factors will continue to demand changes in the way we engineer and manage computing and
communication systems. They may require paradigm shifts in many areas, including hardware design,
software engineering, and new strategies for systems integration.

10.8 Systems of systems: Challenges and solutions
Large-scale systems could be classified as monolithic when all the components work in concert under the
control of a supervising authority and as Systems of Systems (SoS) collections of independent systems
with limited interactions. An analysis of the defining characteristics of an SoS appeared in 1998 [237].
According to this study, a system of systems has five important attributes:

1. The individual components of an SoS, are independent and can be operated alone, disconnected
from the other system components.

2. The components enjoy managerial independence and in fact do operate independently for some
periods of time.

3. The system of systems continually evolves in time as new functions are added while others are
removed.

4. The system is able to perform functions that cannot be performed by any of its components alone;
in other words, it has an emergent behavior.

5. The components exchange only information; thus, they can be geographically distributed over a large
area. As the performance of interconnection networks improves, this geographic spread becomes
less and less noticeable and does not affect the function or the performance of the SoS. This is in
contrast to systems that exchange mass or energy when the distance between components plays a
significant role.

Managerial control distinguishes several classes of systems of systems. A direct system has a central
management that steers the long-term operation of the ensemble of systems; these systems operate
independently most of the time but are subordinated to the common goal. The example of a direct system
given in [237] is an air-defense system in which the individual components can operate independently
but are subject to the requirement to defend the air space.

In the case of collaborative systems such as the Internet, the component systems collaborate volun-
tarily, subject to a previously agreed set of rules and objectives. Finally, virtual systems do not have a
central authority to manage their operations. The World Wide Web is an example of a virtual system;
individual sites may or may not follow policies regarding the structure or the contents of the documents,
the naming conventions, or the site navigation rules.

4The HTH is said to be functional when gates are added to or deleted from the original design; a parametric HTH reduces
the reliability of the chip.

10.10 Exercises and Problems 315

10.9 Further reading
A recent textbook on principles of computer systems design, coauthored by J. H. Saltzer and M. F.
Kaashoek [312], devotes its first chapter to system complexity and to the means of coping with system
complexity. This is a refreshing departure from traditional operating systems textbooks that largely
ignore this topic and focus on how existing systems operate.

10.10 Exercises and problems
Problem 1. Search the literature for papers proposing a layered architecture for computing clouds and

analyze critically the practicality of each of these approaches.

Problem 2. Discuss means to cope with the complexity of computer and communication systems other
than modularity, layering, and hierarchy.

Problem 3. Discuss the implications of the exponential improvement of computer and communication
technologies on system complexity.

Problem 4. In Section 5.12 we discussed a side effect of abstractions, yet another method to cope with
complexity. We showed how a virtual machine-based rootkit (VMBK) could pose serious
security problems. Give other examples demonstrating how abstraction of a physical
system could be exploited for nefarious activities.

Problem 5. Give examples of undesirable behavior of computing and communication systems that can
be characterized as phase transitions. Can you imagine a phase transition in a computing
cloud?

Problem 6. Can you attribute the limited success of the grid movement to causes that can be traced to
emergence?

Problem 7. Hardware trojan horses (HTHs), malicious modifications of the circuitry of an integrated
circuit, are very difficult to detect. What in your view are the main challenges for detecting
HTHs? Discuss how various conceptual methods to detect HTHs are impractical due to
the complexity of the integrated circuits.

Problem 8. Kolmogorov complexity seems to be a theoretical concept that is fairly remote from any
practical application. Yet the simulation of a computer and/or communication system
seems to be informally related to Kolmogorov complexity. Can you explain why?

Problem 9. If you define the entropy of a system based on the probability of being in each of the
states it can reach in the phase space5 and you accept as a measure of system complexity
the uncertainty in the system and, thus, the entropy, can you justify why modularization
decreases the system complexity?

5The phase space is an abstraction in which all possible states of a system are represented, with each possible state corre-
sponding to one unique point in the space.

This page is intentionally left blank

11
CHAPTER

Cloud Application Development

In the previous chapters our discussion was focused on research issues in cloud computing. Now we
examine computer clouds from the perspective of an application developer. This chapter presents a few
recipes that are useful in assembling a cloud computing environment on a local system and in using
basic cloud functions.

It is fair to assume that the population of application developers and cloud users is and will continue
to be very diverse. Some cloud users have developed and run parallel applications on clusters or other
types of systems for many years and expect an easy transition to the cloud. Others are less experienced
but willing to learn and expect a smooth learning curve. Many view cloud computing as an opportunity
to develop new businesses with minimum investment in computing equipment and human resources.

The questions we address here are: How easy is it to use the cloud? How knowledgeable should an
application developer be about networking and security? How easy is it to port an existing application
to the cloud? How easy is it to develop a new cloud application?

The answers to these questions are different for the three cloud delivery models, SaaS, PaaS, and
IaaS; the level of difficulty increases as we move toward the base of the cloud service pyramid, as shown
in Figure 11.1. Recall that SaaS applications are designed for end users and are accessed over the Web;
in this case, users must be familiar with the API of a particular application. PaaS provides a set of tools
and services designed to facilitate application coding and deploying; IaaS provides the hardware and
the software for servers, storage, and networks, including operating systems and storage management
software. The IaaS model poses the most challenges; thus, we restrict our discussion to the IaaS cloud
computing model and concentrate on the most popular services offered at this time, the Amazon Web
Services (AWS).

Though the AWS are well documented, the environment they provide for cloud computing requires
some effort to benefit from the full spectrum of services offered. In this section we report on lessons
learned from the experience of a group of students with a strong background in programming, network-
ing, and operating systems; each of them was asked to develop a cloud application for a problem of
interest in his or her own research area. Here we first discuss several issues related to cloud security,
a major stumbling block for many cloud users; then we present a few recipes for the development of
cloud applications, and finally we analyze several cloud applications developed by individuals in this
group over a period of less than three months.

In the second part of this chapter we discuss several applications. Cognitive radio networks (CRNs)
and a cloud-based simulation of a distributed trust management system are investigated in Section 11.10.
In Section 11.11 we discuss a cloud service for CRN trust management using a history-based algorithm,
and we analyze adaptive audio streaming from a cloud in Section 11.12. A cloud-based optimal FPGA

Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00011-7
© 2013 Elsevier Inc. All rights reserved.

317

318 CHAPTER 11 Cloud Application Development

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

FIGURE 11.1

A pyramid model of cloud computing paradigms. The infrastructure provides the basic resources, the platform
adds an environment to facilitate the use of these resources, while software allows direct access to services.

(Field-Programmable Gate Arrays) synthesis with multiple instances running different design options
is presented in Section 11.13.

11.1 Amazon Web Services: EC2 instances
Figure 11.2 displays the Amazon Management Console (AMC) window listing the Amazon Web Ser-
vices offered at the time of this writing. The services are grouped into several categories: computing
and networking, storage and content delivery, deployment and management, databases, and application
services.

In spite of the wealth of information available from the providers of cloud services, the learning
curve of an application developer is still relatively steep. The examples discussed in this chapter are
designed to help overcome some of the hurdles faced when someone first attempts to use the AWS. Due
to space limitations we have chosen to cover only a few of the very large number of combinations of
services, operating systems, and programming environments supported by AWS.

In Section 3.1 we mentioned that new services are continually added to AWS; the look and feel of
the Web pages changes over time. The screen shots we’ve selected reflect the state of the system at the
time of the writing of this book, the second half of 2012.

To access AWS one must first create an account at http://aws.amazon.com/. Once the account
is created, the AMC allows the user to select one of the services, e.g., EC2, and then start an instance.

Recall that an AWS EC2 instance is a virtual server started in a region and the availability zone is
selected by the user. Instances are grouped into a few classes, and each class has available to it a specific
amount of resources, such as: CPU cycles, main memory, secondary storage, and communication and
I/O bandwidth. Several operating systems are supported by AWS, including Amazon Linux, Red Hat
Enterprise Linux, 6.3, SUSE Linux Enterprise Server 11, Ubuntu Server 12.04.1, and several versions
of Microsoft Windows (see Figure 11.3).

The next step is to create an (AMI)1 on one of the platforms supported by AWS and start an instance
using the RunInstance API. If the application needs more than 20 instances, a special form must be

1An AMI is a unit of deployment. It is an environment that includes all information necessary to set up and boot an instance.

11.2 Connecting Clients to Cloud Instances Through Firewalls 319

FIGURE 11.2

Amazon Web Services accessible from the Amazon Management Console.

filled out. The local instance store persists only for the duration of an instance; the data will persist if an
instance is started using the Amazon Elastic Block Storage (EBS) and then the instance can be restarted
at a later time.

Once an instance is created, the user can perform several actions – for example, connect to the
instance, launch more instances identical to the current one, or create an EBS AMI. The user can also
terminate, reboot, or stop the instance (see Figure 11.4). The Network & Security panel allows the
creation of Security Groups, Elastic IP addresses, Placement Groups, Load Balancers, and Key Pairs
(see the discussion in Section 11.3), whereas the EBS panel allows the specification of volumes and the
creation of snapshots.

11.2 Connecting clients to cloud instances through firewalls
A firewall is a software system based on a set of rules for filtering network traffic. Its function is to
protect a computer in a local area network from unauthorized access. The first generation of firewalls,
deployed in the late 1980s, carried out packet filtering; they discarded individual packets that did not
match a set of acceptance rules. Such firewalls operated below the transport layer and discarded packets
based on the information in the headers of physical, data link, and transport layer protocols.

320 CHAPTER 11 Cloud Application Development

FIGURE 11.3

The Instance menu allows the user to select from existing AMIs.

The second generation of firewalls operate at the transport layer and maintain the state of all con-
nections passing through them. Unfortunately, this traffic-filtering solution opened the possibility of
denial-of-service (DoS) attacks. A DoS attack targets a widely used network service and forces the
operating system of the host to fill the connection tables with illegitimate entries. DoS attacks prevent
legitimate access to the service.

The third generation of firewalls “understand” widely used application layer protocols such as FTP,
HTTP, TELNET, SSH, and DNS. These firewalls examine the header of application layer protocols and
support intrusion detection systems (IDSs).

Firewalls screen incoming traffic and sometimes filter outgoing traffic as well. A first filter encoun-
tered by the incoming traffic in a typical network is a firewall provided by the operating system of the
router; the second filter is a firewall provided by the operating system running on the local computer
(see Figure 11.5).

Typically, the local area network (LAN) of an organization is connected to the Internet via a router.
A router firewall often hides the true address of hosts in the local network using the Network Address
Translation (NAT) mechanism. The hosts behind a firewall are assigned addresses in a “private address
range,” and the router uses the NAT tables to filter the incoming traffic and translate external IP addresses
to private ones.2

2The mapping between the (external address, external port) pair and the (internal address, internal port) tuple carried by
the Network Address Translation function of the router firewall is also called a pinhole.

11.2 Connecting Clients to Cloud Instances Through Firewalls 321

FIGURE 11.4

The Instance Action pull-down menu of the Instances panel of the AWS Management Console allows the
user to interact with an instance, e.g., Connect, Create an EBS AMI Image, and so on.

If one tests a client-server application with the client and the server in the same LAN, the packets
do not cross a router. Once a client from a different LAN attempts to use the service, the packets may
be discarded by the router’s firewall. The application may no longer work if the router is not properly
configured.

Now let’s examine the firewall support in several operating systems. Table 11.1 summarizes the
options supported by various operating systems running on a host or on a router.

A rule specifies a filtering option at (i) the network layer, when filtering is based on the desti-
nation/source IP address; (ii) the transport layer, when filtering is based on destination/source port
number; or (iii) the MAC layer, when filtering is based on the destination/source MAC address.

In Linux or Unix systems the firewall can be configured only as a root using the sudo command. The
firewall is controlled by a kernel data structure, the iptables. The iptables command is used to set up,

322 CHAPTER 11 Cloud Application Development

Router

Client

OS
firewall

Router
firewall

Server

OS firewallRouter
firewall

Network

Router
Anti-
virus

FIGURE 11.5

Firewalls screen incoming and sometimes outgoing traffic. The first obstacle encountered by the inbound
or outbound traffic is a router firewall. The next one is the firewall provided by the host operating system.
Sometimes the antivirus software provides a third line of defense.

Table 11.1 Firewall rule setting. The first column entries indicate whether a feature is supported
by an operating system; the second column, a single rule can be issued to accept/reject a default
policy; the third and fourth columns, filtering based on IP destination and source address,
respectively; the fifth and sixth columns, filtering based on TCP/UDP destination and source
ports, respectively; the seventh and eighth columns, filtering based on ethernet MAC destination
and source address, respectively; the ninth and tenth columns, inbound (ingress) and outbound
(egress) firewalls, respectively.

Operating Def IP IP TCP/UDP TCP/UDP Ether Ether In- Out-
System Rule Dest Src Dest Src MAC MAC bound bound

Addr Addr Port Port Dest Src Fwall Fwall

Linux iptables Yes Yes Yes Yes Yes Yes Yes Yes Yes
OpenBSD Yes Yes Yes Yes Yes Yes Yes Yes Yes
Windows 7 Yes Yes Yes Yes Yes Yes Yes Yes Yes
Windows Vista Yes Yes Yes Yes Yes No No Yes Yes
Windows XP No No Yes Partial No No No Yes No
Cisco Access List Yes Yes Yes Yes Yes Yes Yes Yes Yes
Juniper Networks Yes Yes Yes Yes Yes Yes Yes Yes Yes

maintain, and inspect the tables of the IPv4 packet filter rules in the Linux kernel. Several tables may
be defined; each table contains a number of built-in chains and may also contain user-defined chains. A
chain is a list of rules that can match a set of packets: The INPUT rule controls all incoming connections;
the FORWARD rule controls all packets passing through this host; and the OUTPUT rule controls all

11.2 Connecting Clients to Cloud Instances Through Firewalls 323

outgoing connections from the host. A rule specifies what to do with a packet that matches: Accept, let
the packet pass; Drop, discharge the packet; Queue, pass the packet to the user space; or Return, stop
traversing this chain and resume processing at the head of the next chain. For complete information on
the iptables, see http://linux.die.net/man/8/iptables.

To get the status of the firewall, specify the L (List) action of the iptables command:

sudo iptables -L

As a result of this command the status of the INPUT, FORWARD, and OUTPUT chains will be displayed.
To change the default behavior for the entire chain, specify the action P (Policy), the chain name,

and the target name; e.g., to allow all outgoing traffic to pass unfiltered, use

sudo iptables -P OUTPUT ACCEPT s

To add a new security rule, specify: the action, A (add), the chain, the transport protocol, TCP or UDP,
and the target ports, as in:

sudo iptables -A INPUT -p -tcp -dport ssh -j ACCEPT
sudo iptables -A OUTPUT -p -udp -dport 4321 -j ACCEPT
sudo iptables -A FORWARD -p -tcp -dport 80 -j DROP

To delete a specific security rule from a chain, set the action D (Delete) and specify the chain name
and the rule number for that chain. The top rule in a chain has number 1:

sudo iptables -D INPUT 1
sudo iptables -D OUTPUT 1
sudo iptables -D FORWARD 1

By default, the Linux virtual machines on Amazon’s EC2 accept all incoming connections.
The ability to access that virtual machine will be permanently lost when a user accesses an EC2

virtual machine using ssh and then issues the following command:

sudo iptables -P INPUT DROP.

The access to the Windows 7 firewall is provided by a GUI accessed as follows:

Control Panel -> System & Security -> Windows Firewall -> Advanced
Settings

The default behavior for incoming and/or outgoing connections can be displayed and changed from
the window Windows Firewall with Advanced Security on Local Computer.

Access to the Windows XP firewall is provided by a graphical user interface (GUI) accessed by
selecting Windows Firewall in the Control Panel. If the status is ON, incoming traffic is blocked by
default and a list of Exceptions (as noted on the Exceptions tab) defines the connections allowed. The
user can only define exceptions for TCP on a given port, UDP on a given port, and a specific program.
Windows XP does not provide any control over outgoing connections.

Antivirus software running on a local host may provide an additional line of defense. For example,
the Avast antivirus software (see www.avast.com) supports several real-time shields. The Avast

324 CHAPTER 11 Cloud Application Development

network shield monitors all incoming traffic; it also blocks access to known malicious Web sites. The
Avast Web shield scans the HTTP traffic and monitors all Web browsing activities. The antivirus also
provides statistics related to its monitoring activities.

11.3 Security rules for application and transport layer protocols in EC2
A client must know the IP address of a virtual machine in the cloud to be able to connect to it. The Domain
Name Service (DNS) is used to map human-friendly names of computer systems to IP addresses in the
Internet or in private networks. DNS is a hierarchical distributed database and plays a role reminiscent
of a phone book on the Internet. In late 2010 Amazon announced a DNS service called Route 53 to
route users to AWS services and to infrastructure outside of AWS. A network of DNS servers is scattered
across the globe, which enables customers to gain reliable access to AWS and place strict controls over
who can manage their DNS system by allowing integration with AWS Identity and Access Management
(IAM).

For several reasons, including security and the ability of the infrastructure to scale up, the IP addresses
of instances visible to the outside world are mapped internally to private IP addresses. A virtual machine
running under Amazon’s EC2 has several IP addresses:

1. EC2 Private IP Address. The internal address of an instance; it is only used for routing within the
EC2 cloud.

2. EC2 Public IP Address. Network traffic originating outside the AWS network must use either the
public IP address or the elastic IP address of the instance. The public IP address is translated using
Network Address Translation (NAT) to the private IP address when an instance is launched and it
is valid until the instance is terminated. Traffic to the public address is forwarded to the private IP
address of the instance.

3. EC2 Elastic IP Address. The IP address allocated to an AWS account and used by traffic originated
outside AWS. NAT is used to map an elastic IP address to the private IP address. Elastic IP addresses
allow the cloud user to mask instance or availability zone failures by programmatically remapping
public IP addresses to any instance associated with the user’s account. This allows fast recovery after
a system failure. For example, rather than waiting for a cloud maintenance team to reconfigure or
replace the failing host or waiting for DNS to propagate the new public IP to all of the customers
of a Web service hosted by EC2, the Web service provider can remap the elastic IP address to a
replacement instance. Amazon charges a fee for unallocated Elastic IP addresses.

Amazon Web Services use security groups to control access to users’ virtual machines. A virtual
machine instance belongs to one and only one security group, which can only be defined before the
instance is launched. Once an instance is running, the security group the instance belongs to cannot be
changed. However, more than one instance can belong to a single security group.

Security group rules control inbound traffic to the instance and have no effect on outbound traffic from
the instance. The inbound traffic to an instance, either from outside the cloud or from other instances
running on the cloud, is blocked unless a rule stating otherwise is added to the security group of the
instance. For example, assume a client running on instance A in the security group �A is to connect to
a server on instance B listening on TCP port P, where B is in security group �B . A new rule must be

11.3 Security Rules for Application and Transport Layer Protocols in EC2 325

added to security group �B to allow connections to port P; to accept responses from server B, a new
rule must be added to security group �A.

The following steps allow the user to add a security rule:

1. Sign in to the AWS Management Console at http://aws.amazon.com using your email
address and password and select EC2 service.

2. Use the EC2 Request Instance Wizard to specify the instance type, whether it should be moni-
tored, and specify a key/value pair for the instance to help organize and search (see Figures 11.6
and 11.7).

3. Provide a name for the key pair. Then on the left-side panel, choose Security Groups under Network
& Security, select the desired security group, and click on the Inbound tab to enter the desired rule
(see Figure 11.6).

FIGURE 11.6

AWS security. Choose Security Groups under Network & Security, select the desired security group, and click
on the Inbound tab to enter the desired rule.

326 CHAPTER 11 Cloud Application Development

FIGURE 11.7

EC2 Request Instance Wizard is used to (a) specify the number and type of instances and the zone;
(b) specify the kernelId and the RAM diskId and enable the CloudWatch service to monitor the EC2 instance;
(c) add tags to the instance. A tag is stored in the cloud and consists of a case-sensitive key/value pair private
to the account.

To allocate an Elastic IP address, use the Elastic IPs tab of the Network & Security left-side panel.
On Linux or Unix systems the port numbers below 1,024 can only be assigned by the root. The

plain ASCII file called services maps friendly textual names for Internet services to their assigned port
numbers and protocol types, as in the following example:

11.4 How to Launch an EC2 Linux Instance and Connect to It 327

netstat 15/tcp
ftp 21/udp
ssh 22/tcp
telnet 23/tcp
http 80/tcp

11.4 How to launch an EC2 Linux instance and connect to it
This section gives a step-by-step process to launch an EC2 Linux instance from a Linux platform.
A. Launch an instance

1. From the AWS Management Console, select EC2 and, once signed in, go to Launch Instance Tab.
2. To determine the processor architecture when you want to match the instance with the hardware,

enter the command

uname -m

and choose an appropriate Amazon Linux AMI by pressing Select.
3. Choose Instance Details to control the number, size, and other settings for instances.
4. To learn how the system works, press Continue to select the default settings.
5. Define the instance’s security, as discussed in Section 11.3: In the Create Key Pair page enter a

name for the pair and then press Create and Download Key Pair.
6. The key-pair file downloaded in the previous step is a .pem file, and it must be hidden to prevent

unauthorized access. If the file is in the directory awcdir/dada.pem enter the commands

cd awcdir
chmod 400 dada.pem

7. Configure the firewall. Go to the page Configure firewall, select the option Create a New Security
Group, and provide a Group Name. Normally we use ssh to communicate with the instance; the
default port for communication is port 8080, and we can change the port and other rules by creating
a new rule.

8. Press Continue and examine the review page, which gives a summary of the instance.
9. Press Launch and examine the confirmation page, then press Close to end the examination of the

confirmation page.
10. Press the Instances tab on the navigation panel to view the instance.
11. Look for your Public DNS name. Because by default some details of the instance are hidden, click

on the Show/Hide tab on the top of the console and select Public DNS.
12. Record the Public DNS as PublicDNSname; it is needed to connect to the instance from the Linux

terminal.
13. Use the ElasticIP panel to assign an Elastic IP address if a permanent IP address is required.

B. Connect to the instance using ssh and the TCP transport protocol.

1. Add a rule to the iptables to allow ssh traffic using the TCP protocol. Without this step, either
an access denied or permission denied error message appears when you’re trying to connect to
the instance.

328 CHAPTER 11 Cloud Application Development

sudo iptables -A iptables -p -tcp -dport ssh -j ACCEPT

2. Enter the Linux command:

ssh -i abc.pem ec2-user@PublicDNSname

If you get the prompt You want to continue connecting? respond Yes. A warning that the DNS
name was added to the list of known hosts will appear.

3. An icon of the Amazon Linux AMI will be displayed.

C. Gain root access to the instance

By default the user does not have root access to the instance; thus, the user cannot install any software.
Once connected to the EC2 instance, use the following command to gain root privileges:

sudo -i

Then use yum install commands to install software, e.g., gcc to compile C programs on the cloud.

D. Run the service ServiceName

If the instance runs under Linux or Unix, the service is terminated when the ssh connection is closed.
To avoid the early termination, use the command

nohup ServiceName

To run the service in the background and redirect stdout and stderr to files p.out and p.err, respectively,
execute the command

nohup ServiceName > p.out 2 > p.err &

11.5 How to use S3 in Java
The Java API for Amazon Web Services is provided by the AWS SDK.3

Create an S3 client. S3 access is handled by the class AmazonS3Client instantiated with the account
credentials of the AWS user:

AmazonS3Client s3 = new AmazonS3Client(
new BasicAWSCredentials("your_access_key", "your_secret_key"));

3A software development kit (SDK) is a set of software tools for the creation of applications in a specific software environment.
Java Development Kit (JDK) is an SDK for Java developers available from Oracle; it includes a set of programming tools
such as: javac, the Java compiler that converts Java source code into Java bytecode; java, the loader for Java applications,
which can interpret the class files generated by the Java compiler; javadoc, the documentation generator; jar, the archiver for
class libraries; jdb, the debugger; JConsole, the monitoring and management console; jstat, for JVM statistics monitoring;
jps, a JVM process status tool; jinfo, the utility to get configuration information from a running Java process; jrunscript,
the command-line script shell for Java; the appletviewer tool to debug Java applets without a Web browser; and idlj, the
IDL-to-Java compiler. The Java Runtime Environment is also a component of the JDK, consisting of a Java Virtual Machine
(JVM) and libraries.

11.5 How to Use S3 in Java 329

The access and the secret keys can be found on the user’s AWS account homepage, as mentioned in
Section 11.3.
Buckets. An S3 bucket is analogous to a file folder or directory, and it is used to store S3 objects. Bucket
names must be globally unique; hence, it is advisable to check first to see whether the name exists:

s3.doesBucketExist("bucket_name");

This function returns “true” if the name exists and “false” otherwise. Buckets can be created and deleted
either directly from the AWS Management Console or programmatically as follows:

s3.createBucket("bucket_name");
s3.deleteBucket("bucket_name");

S3 objects. An S3 object stores the actual data and it is indexed by a key string. A single key points
to only one S3 object in one bucket. Key names do not have to be globally unique, but if an existing
key is assigned to a new object, the original object indexed by that key is lost. To upload an object in a
bucket, we can use the AWS Management Console or, programmatically, a file local_ f ile_name can
be uploaded from the local machine to the bucket bucket_name under the key key using

File f = new File("local_file_name");
s3.putObject("bucket_name", "key", f);

A versioning feature for the objects in S3 was made available recently; it allows us to preserve, retrieve,
and restore every version of an S3 object. To avoid problems in uploading large files, e.g., dropped
connections, use the .initiateMultipartUpload() with an API described at the AmazonS3Client. To access
this object with key key from the bucket bucket_name use:

S3Object myFile = s3.getObject("bucket_name", "key");

To read this file, you must use the S3Object’s InputStream:

InputStream in = myFile.getObjectContent();

The InputStream can be accessed using Scanner, BufferedReader, or any other supported method.
Amazon recommends closing the stream as early as possible, since the content is not buffered and it is
streamed directly from the S3. An open InputStream means an open connection to S3. For example, the
following code will read an entire object and print the contents to the screen:

AmazonS3Client s3 = new AmazonS3Client(
new BasicAWSCredentials("access_key", "secret_key"));
InputStream input = s3.getObject("bucket_name", "key")
.getObjectContent();

Scanner in = new Scanner(input);
while (in.hasNextLine())

330 CHAPTER 11 Cloud Application Development

{
System.out.println(in.nextLine());

}
in.close();
input.close();

Batch upload/download. Batch upload requires repeated calls of s3.putObject() while iterating over
local files.

To view the keys of all objects in a specific bucket, use

ObjectListing listing = s3.listObjects("bucket_name");

ObjectListing supports several useful methods, including getObjectSummaries(). S3ObjectSummary
encapsulates most of an S3 object properties (excluding the actual data), including the key to access the
object directly,

List<S3ObjectSummary> summaries = listing.getObjectSummaries();

For example, the following code will create a list of all keys used in a particular bucket and all of the
keys will be available in string form in List < String >allKeys:

AmazonS3Client s3 = new AmazonS3Client(
new BasicAWSCredentials("access_key", "secret_key"));
List<String> allKeys = new ArrayList<String>();
ObjectListing listing = s3.listObjects("bucket_name");
for (S3ObjectSummary summary:listing.getObjectSummaries())
{
allKeys.add(summary.getKey());

}

Note that if the bucket contains a very large number of objects, then s3.listObjects() will return a
truncated list. To test if the list is truncated, we could use listing.isTruncated(); to get the next batch of
objects, use

s3.listNextBatchOfObjects(listing)};

To account for a large number of objects in the bucket, the previous example becomes

AmazonS3Client s3 = new AmazonS3Client(
new BasicAWSCredentials("access_key", "secret_key"));
List<String> allKeys = new ArrayList<String>();
ObjectListing listing = s3.listObjects("bucket_name");
while (true)
{
for (S3ObjectSummary summary :
listing.getObjectSummaries())

11.6 How to Manage SQS Services in C# 331

{
allKeys.add(summary.getKey());
}

if (!listing.isTruncated())
{
break;
}

listing = s3.listNextBatchOfObjects(listing);
}

11.6 How to manage SQS services in C#
Recall from Section 3.1 that SQS is a system for supporting automated workflows; multiple components
can communicate with messages sent and received via SQS . An example showing the use of message
queues is presented in Section 4.7. Figure 11.8 shows the actions available for a given queue in SQS.

The following steps can be used to create a queue, send a message, receive a message, and delete a
message, and delete the queue in C#:

1. Authenticate an SQS connection:

NameValueCollection appConfig =
ConfigurationManager.AppSettings;

AmazonSQS sqs = AWSClientFactory.CreateAmazonSQSClient
(appConfig["AWSAccessKey"], appConfig["AWSSecretKey"]);

2. Create a queue:

CreateQueueRequest sqsRequest = new CreateQueueRequest();
sqsRequest.QueueName = "MyQueue";
CreateQueueResponse createQueueResponse =

sqs.CreateQueue(sqsRequest);
String myQueueUrl;

FIGURE 11.8

Queue actions in SQS.

332 CHAPTER 11 Cloud Application Development

myQueueUrl = createQueueResponse.CreateQueueResult.QueueUrl;

3. Send a message:

SendMessageRequest sendMessageRequest =
new SendMessageRequest();

sendMessageRequest.QueueUrl =
myQueueUrl; //URL from initial queue

sendMessageRequest.MessageBody = "This is my message text.";
sqs.SendMessage(sendMessageRequest);

4. Receive a message:

ReceiveMessageRequest receiveMessageRequest =
new ReceiveMessageRequest();

receiveMessageRequest.QueueUrl = myQueueUrl;
ReceiveMessageResponse receiveMessageResponse =

sqs.ReceiveMessage(receiveMessageRequest);

5. Delete a message:

DeleteMessageRequest deleteRequest =
new DeleteMessageRequest();

deleteRequest.QueueUrl = myQueueUrl;
deleteRequest.ReceiptHandle = messageRecieptHandle;
DeleteMessageResponse DelMsgResponse =

sqs.DeleteMessage(deleteRequest);

6. Delete a queue:

DeleteQueueRequest sqsDelRequest = new DeleteQueueRequest();
sqsDelRequest.QueueUrl =

CreateQueueResponse.CreateQueueResult.QueueUrl;
DeleteQueueResponse delQueueResponse =
sqs.DeleteQueue(sqsDelRequest);

11.7 How to install the Simple Notification Service on Ubuntu 10.04
Ubuntu is an open-source operating system for personal computers based on Debian Linux distribution;
the desktop version of Ubuntu4 supports the Intel x86 32-bit and 64-bit architectures.

The Simple Notification Service (SNS) is a Web service for: monitoring applications, workflow
systems, time-sensitive information updates, mobile applications, and other event-driven applications
that require a simple and efficient mechanism for message delivery. SNS “pushes” messages to clients
rather than requiring a user to periodically poll a mailbox or another site for messages.

4Ubuntu is an African humanist philosophy; “Ubuntu” is a word in the Bantu language of South Africa that means “humanity
toward others.”

11.7 How to Install the Simple Notification Service on Ubuntu 10.04 333

SNS is based on the publish/subscribe paradigm; it allows a user to define the topics, the transport
protocol used (HTTP/HTTPS, email, SMS, SQS), and the endpoint (URL, email address, phone number,
SQS queue) for notifications to be delivered. It supports the following actions:

• Add/Remove Permission.
• Confirm Subscription.
• Create/Delete Topic.
• Get/Set Topic Attributes.
• List Subscriptions/Topics/Subscriptions by Topic.
• Publish/Subscribe/Unsubscribe.

The document at http://awsdocs.s3.amazonaws.com/SNS/latest/sns-qrc.pdf
provides detailed information about each one of these actions.

To install the SNS client the following steps must be taken:

1. Install Java in the root directory and then execute the commands:

deb http://archive.canonical.com/lucidpartner
update
install sun-java6-jdk

Then change the default Java settings:

update-alternatives -config java

2. Download the SNS client, unzip the file, and change permissions:

wget http://sns-public-resources.s3.amazonaws.com/
SimpleNotificationServiceCli-2010-03-31.zip

chmod 775 /root/ SimpleNotificationServiceCli-1.0.2.3/bin

3. Start the AWS Management Console and go to Security Credentials. Check the Access Key ID and
the Secret Access Key and create a text file /root/credential.txt with the following content:

AWSAccessKeyId= your_Access_Key_ID
AWSSecretKey= your_Secret_Access_Key

4. Edit the .bashrc file and add:

export AWS_SNS_HOME=˜/SimpleNotificationServiceCli-1.0.2.3/
export AWS_CREDENTIAL_FILE=$HOME/credential.txt
export PATH=$AWS_SNS_HOME/bin
export JAVA_HOME=/usr/lib/jvm/java-6-sun/

5. Reboot the system.
6. Enter on the command line:

sns.cmd

If the installation was successful, the list of SNS commands will be displayed.

334 CHAPTER 11 Cloud Application Development

11.8 How to create an EC2 Placement Group and use MPI
An EC2 Placement Group is a logical grouping of instances that allows the creation of a virtual
cluster. When several instances are launched as an EC2 Placement Group, the virtual cluster has
a high-bandwidth interconnect system suitable for network-bound applications. The cluster comput-
ing instances require a hardware virtual machine (HVM) ECB-based machine image, whereas other
instances use a paravirtual machine (PVM) image. Such clusters are particularly useful for high-
performance computing when most applications are communication intensive.

Once a placement group is created, MPI (Message Passing Interface) can be used for communi-
cation among the instances in the placement group. MPI is a de facto standard for parallel applica-
tions using message passing, designed to ensure high performance, scalability, and portability; it is
a language-independent “message-passing application programmer interface, together with a protocol
and the semantic specifications for how its features must behave in any implementation” [146]. MPI
supports point-to-point as well as collective communication; it is widely used by parallel programs
based on the same program multiple data (SPMD) paradigm.

The following C code [146] illustrates the startup of MPI communication for a process group
MPI_COM_PROCESS_GROUP consisting of a number of nprocesses; each process is identified by its
rank. The run-time environment mpirun or mpiexec spawns multiple copies of the program, with the
total number of copies determining the number of process ranks in MPI_COM_PROCESS_GROUP.

#include <mpi.h>
#include <stdio.h>
#include <string.h>

#define TAG 0
#define BUFSIZE 128

int main(int argc, char *argv[])
{
char idstr[32];
char buff[BUFSIZE];
int nprocesses;
int my_processId;
int i;
MPI_Status stat;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COM_PROCESS_GROUP,&nprocesses);
MPI_Comm_rank(MPI_COM_PROCESS_GROUP,&my_processId);

MPI_SEND and MPI_RECEIVE are blocking send and blocking receive, respectively; their
syntax is:

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag,MPI_Comm comm)

11.8 How to Create an EC2 Placement Group and Use MPI 335

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

with
buf − initial address of send buffer (choice).
count − number of elements in send buffer (nonnegative integer).
datatype − data type of each send buffer element (handle).
dest − rank of destination (integer).
tag − message tag (integer).
comm − communicator (handle).

Once started, every process other than the coordinator, the process with rank = 0, sends a message
to the entire group and then receives a message from all the other members of the process group.

if(my_processId == 0)
{
printf(“%d: We have %d processes\n", my_processId, nprocesses);
for(i=1;i<nprocesses;i++)
{
sprintf(buff, “Hello %d! “, i);
MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_PROCESS_
GROUP);

}
for(i=1;i<nprocesses;i++)
{
MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_PROCESS_
GROUP,&stat);
printf(“%d: %s\n“, my_processId, buff);

}
}
else
{
/* receive from rank 0: */
MPI_Recv(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_PROCESS_
GROUP, &stat);
sprintf(idstr, “Processor %d “, my_processId);
strncat(buff, idstr, BUFSIZE-1);
strncat(buff, “reporting for duty\n‘ BUFSIZE-1);
/* send to rank 0: */
MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COM_PROCESS
_GROUP);

}
MPI_Finalize();
return 0;

}

336 CHAPTER 11 Cloud Application Development

An example of cloud computing using the MPI is described in [119]. An example of MPI use on
EC2 is located at http://rc.fas.harvard.edu/faq/amazonec2.

11.9 How to install Hadoop on Eclipse on a Windows system
The software packages used are:

• Eclipse (www.eclipse.org) is a software development environment that consists of an integrated
development environment (IDE) and an extensible plug-in system. It is written mostly in Java and
can be used to develop applications in Java and, by means of various plug-ins, in C, C++, Perl, PHP,
Python, R, Ruby, and several other languages. The IDE is often called Eclipse CDT for C/C++,
Eclipse JDT for Java, and Eclipse PDT for PHP.

• Apache Hadoop is a software framework that supports data-intensive distributed applications under
a free license. Hadoop was inspired by Google’s MapReduce. See Section 4.6 for a discussion of
MapReduce and Section 4.7 for an application using Hadoop.

• Cygwin is a Unix-like environment for Microsoft Windows. It is open-source software released under
the GNU General Public License version 2. The cygwin environment consists of (1) a dynamic-link
library (DLL) as an API compatibility layer providing a substantial part of the POSIX API func-
tionality; and (2) an extensive collection of software tools and applications that provide a Unix-like
look and feel.

A. Prerequisites

• Java 1.6; set JAVA_Home = path where JDK is installed
• Eclipse Europa 3.3.2

Note: the Hadoop plugin was specially designed for Europa and newer releases of Eclipse might
have some issues with the Hadoop plugin.

B. SSH Installation

1. Install cygwin using the installer downloaded from www.cygwin.com. From the Select Pack-
ages window, select the openssh and openssl under Net.
Note: Create a desktop icon when asked during installation.

2. Display the “Environment Variables” panel:

Computer -> System Properties -> Advanced System Settings
-> Environment Variables

Click on the variable named Path and press Edit; append the following value to the path
variable:

;c:\cygwin\bin;c:\cygwin\usr\bin
3. Configure the ssh daemon using cygwin. Left-click on the cygwin icon on the desktop and click

“Run as Administrator.” Type in the command window of cygwin:

ssh-host-config.

11.9 How to Install Hadoop on Eclipse on a Windows System 337

4. Answer “Yes” when prompted with sshd should be installed as a service; answer “No” to all
other questions.

5. Start the cygwin service by navigating to:

Control Panel -> Administrative Tools -> Services

Look for cygwin sshd and start the service.
6. Open the cygwin command prompt and execute the following command to generate keys:

ssh-keygen

7. When prompted for filenames and passphrases, press Enter to accept default values. After the
command has finished generating keys, enter the following command to change into your .ssh
directory:

cd˜.ssh

8. Check to see whether the keys were indeed generated:

ls -l

9. The two files id_rsa.pub and id_rsa with recent creation dates contain authorization keys.
10. To register the new authorization keys, enter the following command (note: the sharply-angled

double brackets are very important):

cat id_rsa.pub � authorized_keys

11. Check to see whether the keys were set up correctly:

ssh localhost

12. Since it is a new ssh installation, you will be warned that authenticity of the host could not be
established and will be asked whether you really want to connect. Answer Yes and press Enter.
You should see the cygwin prompt again, which means that you have successfully connected.

13. Now execute again the command:

ssh localhost

This time no prompt should appear.

C. Download Hadoop

1. Download Hadoop 0.20.1 and place it in a directory such as:

C:Java

2. Open the cygwin command prompt and execute:

cd

3. Enable the home directory folder to be shown in the Windows Explorer window:

explorer

338 CHAPTER 11 Cloud Application Development

4. Open another Windows Explorer window and navigate to the folder that contains the downloaded
Hadoop archive.

5. Copy the Hadoop archive into the home directory folder.

D. Unpack Hadoop

1. Open a new cygwin window and execute:

tar -xzf hadoop-0.20.1.tar.gz

2. List the contents of the home directory:

ls -l

You should see a newly created directory called Hadoop-0.20.1. Execute:

cd hadoop-0.20.1
ls -l

You should see the files listed in Figure 11.9.

E. Set properties in configuration file

1. Open a new cygwin window and execute the following commands:

cd hadoop-0.20.1
cd conf
explorer

FIGURE 11.9

The result of unpacking Hadoop.

11.10 Cloud-Based Simulation of a Distributed Trust Algorithm 339

FIGURE 11.10

The creation of a Hadoop Distributed File System (HDFS).

2. The last command will cause the Explorer window for the conf directory to pop up. Minimize it
for now or move it to the side.

3. Launch Eclipse or a text editor such as Notepad ++ and navigate to the conf directory. Open the
Hadoop-site file to insert the following lines between the <configuration> and </configuration>
tags:

<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9100</value>
</property> <property>
<name>mapred.job.tracker</name>
<value>localhost:9101</value>
</property> <property>
<name>dfs.replication</name>
<value>1</value>
</property>

F. Format the Namenode

Format the namenode to create a Hadoop Distributed File System (HDFS). Open a new cygwin
window and execute the following commands:

cd hadoop-0.20.1
mkdir logs
bin/hadoop namenode -format

When the formatting of the namenode is finished, the message in Figure 11.10 appears.

11.10 Cloud-based simulation of a distributed trust algorithm
Mobile wireless applications are likely to benefit from cloud computing, as we discussed in Chapter 4.
This expectation is motivated by several reasons:

• The convenience of data access from any site connected to the Internet.
• The data transfer rates of wireless networks are increasing; the time to transfer data to and from a

cloud is no longer a limiting factor.

340 CHAPTER 11 Cloud Application Development

• Mobile devices have limited resources; whereas new generations of smartphones and tablet com-
puters are likely to use multicore processors and have a fair amount of memory, power consumption
is, and will continue to be, a major concern in the near future. Thus, it seems reasonable to delegate
compute- and data-intensive tasks to an external entity, e.g., a cloud.

The first application we discuss is a cloud-based simulation for trust evaluation in a Cognitive Radio
Network (CRN) [52]. The available communication spectrum is a precious commodity, and the objective
of a CRN is to use the communication bandwidth effectively while attempting to avoid interference
with licensed users. Two main functions necessary for the operation of a CRN are spectrum sensing
and spectrum management. The former detects unused spectrum and the latter decides the optimal
use of the available spectrum. Spectrum sensing in CRNs is based on information provided by the
nodes of the network. The nodes compete for the free channels, and some may supply deliberately
distorted information to gain advantage over the other nodes; thus, trust determination is critical for the
management of CRNs.

Cognitive Radio Networks. Research over the last decade reveals a significant temporal and spatial
underutilization of the allocated spectrum. Thus, there is a motivation to opportunistically harness the
vacancies of spectrum at a given time and place.

The original goal of cognitive radio, first proposed at Bell Labs [246,247], was to develop a software-
based radio platform that allows a reconfigurable wireless transceiver to automatically adapt its com-
munication parameters to network availability and to user demands. Today the focus of cognitive radio
is on spectrum sensing [58,161].

We recognize two types of devices connected to a CRN: primary and secondary. Primary
nodes/devices have exclusive rights to specific regions of the spectrum; secondary nodes/devices enjoy
dynamic spectrum access and are able to use a channel, provided that the primary, licensed to use that
channel, is not communicating. Once a primary starts its transmission, the secondary using the channel
is required to relinquish it and identify another free channel to continue its operation. This mode of
operation is called an overlay mode.

CRNs are often based on a cooperative spectrum-sensing strategy. In this mode of operation, each
node determines the occupancy of the spectrum based on its own measurements, combined with infor-
mation from its neighbors, and then shares its own spectrum occupancy assessment with its neighbors
[129,339,340].

Information sharing is necessary because a node alone cannot determine the true spectrum occupancy.
Indeed, a secondary node has a limited transmission and reception range; node mobility combined
with typical wireless channel impairments, such as multipath fading, shadowing, and noise, add to the
difficulty of gathering accurate information by a single node.

Individual nodes of a centralized or infrastructure-based CRN send the results of their measurements
regarding spectrum occupancy to a central entity, whether a base station, an access point, or a cluster
head. This entity uses a set of fusion rules to generate the spectrum occupancy report and then distributes
it to the nodes in its jurisdiction. The area covered by such networks is usually small since global spectrum
decisions are affected by the local geography.

There is another mode of operation based on the idea that a secondary node operates at a much lower
power level than a primary one. In this case the secondary can share the channel with the primary as

11.10 Cloud-Based Simulation of a Distributed Trust Algorithm 341

long as its transmission power is below a threshold, μ, that has to be determined periodically. In this
scenario the receivers that want to listen to the primary are able to filter out the “noise” caused by the
transmission initiated by secondaries if the signal-to-noise ratio, (S/N), is large enough.

We are only concerned with the overlay mode whereby a secondary node maintains an occupancy
report, which gives a snapshot of the current status of the channels in the region of the spectrum it is
able to access. The occupancy report is a list of all the channels and their state, e.g., 0 if the channel is
free for use and 1 if the primary is active. Secondary nodes continually sense the channels available to
them to gather accurate information about available channels.

The secondary nodes of an ad hoc CRN compete for free channels, and the information one node may
provide to its neighbors could be deliberately distorted. Malicious nodes will send false information
to the fusion center in a centralized CRN. Malicious nodes could attempt to deny the service or to
cause other secondary nodes to violate spectrum allocation rules. To deny the service, a node will report
that free channels are used by the primary. To entice the neighbors to commit Federal Communication
Commission (FCC) violations, the occupancy report will show that channels used by the primary are
free. This attack strategy is called a secondary spectrum data falsification (SSDF), or Byzantine, attack.5

Thus, trust determination is a critical issue for CR networks.

Trust. The actual meaning of trust is domain and context specific. Consider, for example, networking;
at the MAC layer the multiple-access protocols assume that all senders follow the channel access
policy, e.g., in Carrier Sense Multiple Access with Collision Detection (CSMA-CD) a sender senses the
channel and then attempts to transmit if no one else does. In a store-and-forward network, trust assumes
that all routers follow a best-effort policy to forward packets toward their destination.

In the context of cognitive radio, trust is based on the quality of information regarding the channel
activity provided by a node. The status of individual channels can be assessed by each node based on
the results of its own measurements, combined with the information provided by its neighbors, as is the
case of several algorithms discussed in the literature [68,339].

The alternative discussed in Section 11.11 is to have a cloud-based service that collects information
from individual nodes, evaluates the state of each channel based on the information received, and
supplies this information on demand. Evaluation of the trust and identification of untrustworthy nodes
are critical for both strategies [284].

A Distributed Algorithm for Trust Management in Cognitive Radio. The algorithm computes the
trust of node 1 � i � n in each node in its vicinity, j ∈ Vi , and requires several preliminary steps. The
basic steps executed by a node i at time t are:

1. Determine node i’s version of the occupancy report for each one of the K channels:

Si (t) = {si,1(t), si,2(t), . . . , si,K (t)} (11.1)

In this step node i measures the power received on each of the K channels.
2. Determine the set Vi (t) of the nodes in the vicinity of node i . Node i broadcasts a message and

individual nodes in its vicinity respond with their NodeId.
3. Determine the distance to each node j ∈ Vi (t) using the algorithm described in this section.

5See Section 2.11 for a brief discussion of Byzantine attacks.

342 CHAPTER 11 Cloud Application Development

4. Infer the power as measured by each node j ∈ Vi (t) on each channel k ∈ K .
5. Use the location and power information determined in the previous two steps to infer the status of

each channel:
sinfer

i,k, j (t), 1 � k � K , j ∈ Vi (t). (11.2)

A secondary node j should have determined 0 if the channel is free for use, 1 if the primary node is
active, and X if it cannot be determined.

sinfer
i,k, j (t) =

⎧⎨
⎩

0 if secondary node j decides that channel k is free.
1 if secondary node j decides that channel k is used by the primary.

X if no inference can be made.
(11.3)

6. Receive the information provided by neighbor j ∈ Vi (t), Srecv
i,k, j (t).

7. Compare the information provided by neighbor j ∈ Vi (t):

Srecv
i,k, j (t) =

{
srecv

i,1, j (t), srecv
i,2, j (t), . . . , srecv

i,K , j (t)
}

(11.4)

with the information inferred by node i about node j :

Sinfer
i,k, j (t) =

{
sinfer

i,1, j (t), sinfer
i,2, j (t), . . . , sinfer

i,K , j (t)
}

. (11.5)

8. Compute the number of matches, mismatches, and cases when no inference is possible, respectively,

αi, j (t) = M
[

Sinfer
i,k, j (t), Srecv

i,k, j (t)
]
, (11.6)

with M the number of matches between the two vectors and

βi, j (t) = N
[

Sinfer
i,k, j (t), Srecv

i,k, j (t)
]
, (11.7)

with N the number of mismatches between the two vectors, and Xi, j (t) the number of cases where
no inference could be made.

9. Use the quantities αi, j (t), βi, j (t), and Xi, j (t) to assess the trust in node j . For example, compute
the trust of node i in node j at time t as

ζi, j (t) = [
1 + Xi, j (t)

] αi, j (t)

αi, j (t) + βi, j (t)
. (11.8)

Simulation of the Distributed Trust Algorithm. The cloud application is a simulation of a CRN to
assess the effectiveness of a particular trust assessment algorithm. Multiple instances of the algorithm
run concurrently on an AWS cloud. The area where the secondary nodes are located is partitioned into
several overlapping subareas, as shown in Figure 11.11. The secondary nodes are identified by an
instance Id, iId, as well as a global Id, gId. The simulation assumes that the primary nodes cover the
entire area; thus, their position is immaterial.

11.10 Cloud-Based Simulation of a Distributed Trust Algorithm 343

100
05 07

70

50

Instance 1

Instance 3

Instance 4

30

30

0

100

Instance 2

FIGURE 11.11

Data partitioning for the simulation of a trust algorithm. The area covered is of size 100 × 100 units.
The nodes in the four subareas of size 70 × 70 units are processed by an instance of the cloud application.
The subareas allocated to an instance overlap to allow an instance to have all the information about a node
in its coverage area.

The simulation involves a controller and several cloud instances. In its initial implementation, the
controller runs on a local system under Linux Ubuntu 10.04 LTS. The controller supplies the data, the
trust program, and the scripts to the cloud instances; the cloud instances run under the Basic 32-bit Linux
image on AWS, the so-called t1.micro. The instances run the actual trust program and compute the
instantaneous trust inferred by a neighbor; the results are then processed by an awk6 script to compute
the average trust associated with a node as seen by all its neighbors. On the next version of the application
the data is stored on the cloud using the S3 service, and the controller also runs on the cloud.

In the simulation discussed here, the nodes with

gI d = {1, 3, 6, 8, 12, 16, 17, 28, 29, 32, 35, 38, 39, 43, 44, 45} (11.9)

were programmed to be dishonest. The results show that the nodes programmed to act maliciously
have a trust value lower than that of the honest nodes; their trust value is always lower than 0.6 and,
in many instances, lower than 0.5 (see Figure 11.12). We also observe that the node density affects the
accuracy of the algorithm; the algorithm predicts more accurately the trust in densely populated areas.
As expected, nodes with no neighbors are unable to compute the trust.

6The awk utility is based on a scripting language and used for text processing; in this application it is used to produce
formatted reports.

344 CHAPTER 11 Cloud Application Development

FIGURE 11.12

The trust values computed using the distributed trust algorithm. The secondary nodes programmed to act
maliciously have a trust value less than 0.6 and many less than 0.5, lower than that of the honest nodes.

In practice the node density is likely to be nonuniform, high in a crowded area such as a shopping mall,
and considerably lower in surrounding areas. This indicates that when the trust is computed using the
information provided by all secondary nodes, we can expect higher accuracy of the trust determination
in higher density areas.

11.11 A trust management service
The cloud service discussed in this section, see also [52], is an alternative to the distributed trust
management scheme analyzed in Section 11.10. mobile devices are ubiquitous nowadays and their use
will continue to increase. Clouds are emerging as the computing and storage engines of the future for
a wide range of applications. There is a symbiotic relationship between the two; mobile devices can
consume as well as produce very large amounts of data, whereas computer clouds have the capacity
to store and deliver such data to the user of a mobile device. To exploit the potential of this symbiotic
relationship, we propose a new cloud service for the management of wireless networks.

Mobile devices have limited resources; new generations of smartphones and tablet computers are
likely to use multicore processors and have a fair amount of memory, but power consumption is still and
will continue to be a major concern; thus, it seems reasonable to delegate and data-intensive tasks to the
cloud. The motivation for this application is to reduce the power consumption of the mobile devices.

Transferring computations related to CRN management to a cloud supports the development of
new, possibly more accurate, resource management algorithms. For example, algorithms to discover

11.11 A Trust Management Service 345

communication channels currently in use by a primary transmitter could be based on past history but are
not feasible when the trust is computed by the mobile device. Such algorithms require massive amounts
of data and can also identify malicious nodes with high probability.

Mobile devices such as smartphones and tablets are able to communicate using two networks: (i)
a cellular wireless network; and (ii) a Wi-Fi network. The service we propose assumes that a mobile
device uses the cellular wireless network to access the cloud, whereas the communication over the
Wi-Fi channel is based on cognitive radio (CR). The amount of data transferred using the cellular
network is limited by the subscriber’s data plan, but no such limitation exists for the Wi-Fi network.
The cloud service, discussed next, will allow mobile devices to use the Wi-Fi communication channels
in a cognitive radio network environment and will reduce the operating costs for end users.

Although the focus of our discussion is on trust management for CRNs, the cloud service we propose
can be used for tasks other than bandwidth management; for example, routing in mobile ad hoc net-
works, detection and isolation of noncooperative nodes, and other network management and monitoring
functions could benefit from the identification of malicious nodes.

Model Assumptions. The cognitive radio literature typically analyzes networks with a relatively small
number of nodes and active in a limited geographic area; thus, all nodes in the network sense the same
information on channel occupancy. Channel impairments, such as signal fading, noise, and so on cause
errors and lead trustworthy nodes to report false information. We consider networks with a much
larger number of nodes distributed over a large geographic area; as the signal strength decays with the
distance, we consider several rings around a primary tower. We assume a generic fading model given
by the following expression:

γ i
k = Tk × A2

sα
ik

(11.10)

where γ i
k is the received signal strength on channel k at location of node i, A is the frequency constant,

2 � α � 6 is path loss factor, sα
ik is the distance between primary tower Pk and node i , and Tk is the

transition power of primary tower Pk transmitting on channel k.
In our discussion we assume that there are K channels labeled 1, 2, . . . , K and a primary transmitter

Pk transmits on channel k. The algorithm is based on several assumptions regarding the secondary
nodes, the behavior of malicious nodes, and the geometry of the system. First, we assume that the
secondary nodes:

• Are mobile devices; some are slow-moving, others are fast-moving.
• Cannot report their position because they are not equipped with a global positioning system (GPS).
• The clocks of the mobile devices are not synchronized.
• The transmission and reception range of a mobile device can be different.
• The transmission range depends on the residual power of each mobile device.

We assume that the malicious nodes in the network are a minority and their behavior is captured by the
following assumptions:

• The misbehaving nodes are malicious rather than selfish; their only objective is to hinder the activity
of other nodes whenever possible, a behavior distinct from the one of selfish nodes motivated to gain
some advantage.

346 CHAPTER 11 Cloud Application Development

P1

P4

P2

P3

Cloud

FIGURE 11.13

Schematic representation of a CRN layout: four primary nodes, P1−P4, a number of mobile devices, two
towers for a cellular network and a cloud are shown. Not shown are the hotspots for the Wi-Fi network.

• The malicious nodes are uniformly distributed in the area we investigate.
• The malicious nodes do not collaborate in their attack strategies.
• The malicious nodes change the intensity of their Byzantine attack in successive time slots. Similar

patterns of malicious behavior are easy to detect, and an intelligent attacker is motivated to avoid
detection.

The geometry of the system is captured by Figure 11.13. We distinguish primary and secondary nodes
and the cell towers used by the secondary nodes to communicate with service running on the cloud.

We use a majority voting rule for a particular ring around a primary transmitter. The global decision
regarding the occupancy of a channel requires a majority of the votes. Since the malicious nodes are a
minority and they are uniformly distributed, the malicious nodes in any ring are also a minority; thus,
a ring-based majority fusion is a representative of accurate occupancy for the channel associated with
the ring.

11.11 A Trust Management Service 347

All secondary nodes are required to register first and then to transmit periodically their current power
level, as well as their occupancy report for each one of the K channels. As mentioned in the introductory
discussion, the secondary nodes connect to the cloud using the cellular network. After a mobile device
is registered, the cloud application requests the cellular network to detect its location. The towers of
the cellular network detect the location of a mobile device by triangulation with an accuracy that is
a function of the environment and is of the order of 10 meters. The location of the mobile device is
reported to the cloud application every time it provides an occupancy report.

The nodes that do not participate in the trust computation will not register in this cloud-based version
of the resource management algorithm; thus, they do not get the occupancy report and cannot use it to
identify free channels. Obviously, if a secondary node does not register, it cannot influence other nodes
and prevent them from using free channels, or tempt them to use busy channels.

In the registration phase a secondary node transmits its MAC address and the cloud responds with
the tuple (�, δs). Here, � is the time interval between two consecutive reports, chosen to minimize
the communication as well as the overhead for sensing the status of each channel. To reduce the
communication overhead, secondary nodes should only transmit the changes from the previous status
report. δs < � is the time interval to the first report expected from the secondary node. This scheme
provides a pseudo-synchronization so that the data collected by the cloud, and used to determine the
trust is, based on observations made by the secondary nodes at about the same time.

An Algorithm for Trust Evaluation Based on Historical Information. The cloud computes the
probable distance dk

i of each secondary node i from the known location of a primary transmitter, Pk .
Based on signal attenuation properties we conceptualize N circular rings centered at the primary, where
each ring is denoted by Rk

r , with 1 � r � N the ring number. The radius of a ring is based on the
distance dk

r to the primary transmitter Pk . A node at a distance dk
i � dk

1 is included in the ring Rk
1,

nodes at distance dk
1 < dk

i � dk
2 are included in the ring Rk

2, and so on. The closer to the primary, the
more accurate the channel occupancy report of the nodes in the ring should be. Call nk

r the number of
nodes in ring Rk

r .
At each report cycle at time tq , the cloud computes the occupancy report for channel 1 � k � K used

by primary transmitter Pk . The status of channel k reported by node i ∈ Rk
r is denoted as sk

i (tq).
Call σ k

one(tq) the count of the nodes in the ring Rk
r reporting that the channel k is not free (reporting

sk
i (tq) = 1) and σ k

zero(tq) the count of those reporting that the channel is free (reporting sk
i (tq) = 0):

σ k
one(tq) = �

nk
r

i=1sk
i (tq) and σ k

zero(tq) = nk
r − σ k

one(tq). (11.11)

Then, the status of channel k reported by the nodes in the ring Rk
r is determined by majority voting as

σ k
Rr

(tq)

{= 1 when σ k
one(tq) � σ k

zero(tq).

= 0 otherwise.
(11.12)

To determine the trust in node i we compare sk
i (tq) with σ k

Rr
(tq); call αk

i,r (tq) and βk
i,r (tq) the number

of matches and, respectively, mismatches in this comparison for each node in the ring Rk
r . We repeat

this procedure for all rings around Pk and construct

αk
i (tq) = �

nk
r

r=1α
k
i,r (tq) and βk

i (tq) = �
nk

r
r=1β

k
i,r (tq). (11.13)

348 CHAPTER 11 Cloud Application Development

Node i will report the status of the channels in the set Ci (tq), the channels with index k ∈ Ci (tq); then,
the quantities αi (tq) and βi (tq) with αi (tq) + βi (tq) = |Ci (tq)| are

αi (tq) = �k∈Ci α
k
i (tq) and βi (tq) = �k∈Ci β

k
i (tq). (11.14)

Finally, the global trust in node i is

ζi (tq) = αi (tq)

αi (tq) + βi (tq)
. (11.15)

The trust in each node at each iteration is determined using a similar strategy to the one discussed
earlier. Its status report, S j (t), contains only information about the channels it can report on, and only
if the information has changed from the previous reporting cycle.

Then, a statistical analysis of the random variables for a window of time W , ζ j (tq), tq ∈ W allows us
to compute the moments as well as a 95% confidence interval. Based on these results we assess whether
node j is trustworthy and eliminate the untrustworthy nodes when we evaluate the occupancy map at
the next cycle. We continue to assess the trustworthiness of all nodes and may accept the information
from node j when its behavior changes.

Let’s now discuss the use of historical information to evaluate trust. We assume a sliding window
W (tq) consists of nw time slots. Given two decay constants k1and k2, with k1 + k2 = 1, we use an
exponential averaging that gives decreasing weight to old observations. We choose k1 � k2 to give
more weight to the past actions of a malicious node. Such nodes attack only intermittently and try to
disguise their presence with occasional good reports; the misbehavior should affect the trust more than
the good actions. The history-based trust requires the determination of two quantities:

αH
i (tq) = �

nw−1
i=0 αi (tq − iτ)ki

1 and βH
i (tq) = �

nw−1
i=0 βi (tq − iτ)ki

2. (11.16)

Then, the history-based trust for node i valid only at times tq � nwτ is:

ζ H
i (tq) = αH

i (tq)

αH
i (tq) + βH

i (tq)
. (11.17)

For times tq < nwτ the trust will be based only on a subset of observations rather than a full window
on nw observations.

This algorithm can also be used in regions in which the cellular infrastructure is missing. An ad
hoc network could allow the nodes that cannot connect directly to the cellular network to forward their
information to nodes closer to the towers and then to the cloud-based service.

Simulation of the History-Based Algorithm for Trust Management. The aim of the history-based
trust evaluation is to distinguish between trustworthy and malicious nodes. We expect the ratio of
malicious to trustworthy nodes as well as node density to play an important role in this decision. The
node density ρ is the number of nodes per unit of the area. In our simulation experiments the size of the
area is constant but the number of nodes increases from 500 to 2,000; thus, the node density increases
by a factor of four. The ratio of the number of malicious to the total number of nodes varies between
α = 0.2 and a worst case of α = 0.6.

11.11 A Trust Management Service 349

The performance metrics we consider are as follows: the average trust for all nodes, the average
trust of individual nodes, and the error of honest/trustworthy nodes. We want to see how the algorithm
behaves when the density of the nodes increases, so we consider four cases with 500, 1,000, 1,500,

and 2,000 nodes on the same area. Thus, we allow the density to increase by a factor of four. We also
investigate the average trust when α, the ratio of malicious nodes to the total number of nodes, increases
from α = 0.2 to α = 0.4 and, finally, to α = 0.6.

This straightforward data-partitioning strategy for the distributed trust management algorithm is
not a reasonable one for the centralized algorithm, because it would lead to excessive communication
among the cloud instances. Individual nodes may contribute data regarding primary transmitters in a
different subarea; to evaluate the trust of each node, the cloud instances would have to exchange a
fair amount of information. This data partitioning would also complicate our algorithm, which groups
together secondary nodes based on their distance from the primary one.

Instead, we allocate to each instance a number of channels, and all instances share the information
about the geographic position of each node. The distance of a secondary node to any primary one can
then be easily computed. This data-partitioning strategy scales well in the number of primaries. Thus, it
is suitable for simulation in large metropolitan areas, but may not be able to accommodate cases when
the number of secondaries is on the order of 108–109.

The objective of our studies is to understand the limitations of the algorithm; the aim of the algorithm
is to distinguish between trustworthy and malicious nodes. We expect that the ratio of malicious to
trustworthy nodes, as well as the node density should play an important role in this decision. The
measures we examine are the average trust for all nodes, as well as the average trust of individual nodes.

The effect of the malicious versus trustworthy node ratio on the average trust. We report the effect
of the malicious versus trustworthy node ratio on the average trust when the number of nodes increases.
The average trust is computed separately for the two classes of nodes and allows us to determine whether
the algorithm is able to clearly separate them.

Recall that the area is constant; thus, when the number of nodes increases, so does the node density.
First we consider two extreme cases: the malicious nodes represent only 20% of the total number of
nodes and an unrealistically high presence, 60%. Then we report on the average trust when the number
of nodes is fixed and the malicious nodes represent an increasing fraction of the total number of nodes.

Results reported in [52] show that when the malicious nodes represent only 20% of all nodes, there
is a clear distinction between the two groups. The malicious nodes have an average trust of 0.28 and
trustworthy nodes have an average trust index of 0.91, regardless of the number of nodes.

When the malicious nodes represent 60% of all the nodes, the number of nodes plays a significant
role; when the number of nodes is small, the two groups cannot be distinguished, so their average trust
index is almost equal, 0.55, although the honest nodes have a slightly larger average trust value. When
the number of nodes increases to 2,000 and node density increases fourfold, the average trust of the
malicious group decreases to 0.45 and for the honest group it increases to about 0.68.

This result is not unexpected; it only shows that the history-based algorithm is able to classify the
nodes properly, even when the malicious nodes are a majority, a situation we do not expect to encounter
in practice. This effect is somewhat surprising; we did not expect that under these extreme conditions
the average of the trust of all nodes would be so different for the two groups. A possible explanation
is that our strategy to reward constant good behavior rather than occasional good behavior, designed to
mask the true intentions of a malicious node, works well.

350 CHAPTER 11 Cloud Application Development

Figures 11.14(a) and (b) shows the average trust function of α, the ratio of malicious versus total
number of nodes. The results confirm the behavior discussed earlier. We see a clear separation of the
two classes only when the malicious nodes are in the minority. When the density of malicious nodes
approaches a high value so that they are in the majority, the algorithm still performs, as is evident from
the figures. The average trust for honest nodes even at high value of α is larger than the trust of malicious
nodes. Thus, the trusts allows the identification of malicious nodes. We also observe that the distinction
between the two classes of nodes is more clear when the number of nodes in the network increases.

The benefits of a cloud-based service for trust management. A cloud service for trust management
in cognitive networks can have multiple technical as well as economic benefits [74]. The service is
likely to have a broader impact than the one discussed here, and it could be used to support a range of
important policies in a wireless network where many decisions require the cooperation of all nodes.
A history-based algorithm to evaluate the trust and detect malicious nodes with high probability is at
the center of the solution we have proposed [52].

A centralized, history-based algorithm for bandwidth management in CRNs has several advantages
over the distributed algorithms discussed in the literature:

• Drastically reduces the computations a mobile device is required to carry out to identify free channels
and avoid penalties associated with interference with primary transmitters.

• Allows a secondary node to get information about channel occupancy as soon as it joins the system,
and later on demand. This information is available even when a secondary node is unable to receive
reports from its neighbors, or when it is isolated.

• Does not require the large number of assumptions critical to the distributed algorithms.
• The dishonest nodes can be detected with high probability and their reports can be ignored; thus,

over time the accuracy of the results increases. Moreover, historic data could help detect a range of
Byzantine attacks orchestrated by a group of malicious nodes.

• Is very likely to produce more accurate results than the distributed algorithm because the reports are
based on information from all secondary nodes reporting on a communication channel used by a
primary, not only those in its vicinity; a higher node density increases the accuracy of the predictions.
The accuracy of the algorithm is a function of the frequency of the occupancy reports provided by
the secondary nodes.

The centralized trust management scheme has several other advantages. First, it can be used not only
to identify malicious nodes and provide channel occupancy reports, but also to manage the allocation
of free channels. In the distributed case, two nodes may attempt to use a free channel and collide; this
situation is avoided in the centralized case. At the same time, malicious nodes can be identified with
high probability and be denied access to the occupancy report.

The server could also collect historic data regarding the pattern of behavior of the primary nodes
and use this information for the management of free channels. For example, when a secondary requests
access for a specific length of time, the service may attempt to identify a free channel likely to be
available for that time.

The trust management may also be extended to other network operations such as routing in a mobile
ad hoc network; the strategy in this case would be to avoid routing through malicious nodes.

11.11 A Trust Management Service 351

FIGURE 11.14

The average trust function of α when the population size increases: (a) 500; (b) 2,000 nodes. As long as
malicious nodes represent 50% or less of the total number of nodes, the average trust of malicious nodes is
below 0.3, whereas the average trust of trustworthy nodes is above 0.9 in a scale of 0 to 1.0. As the number
of nodes increases, the distance between the average trust of the two classes becomes larger, and even larger
when α > 0.5., i.e., when the malicious nodes are in the majority.

352 CHAPTER 11 Cloud Application Development

11.12 A cloud service for adaptive data streaming
In this section we discuss a cloud application related to data streaming [288]. Data streaming is the
name given to the transfer of data at a high rate with real-time constraints. Multimedia applications such
as music and video streaming, high-definition television (HDTV), scientific applications that process a
continuous stream of data collected by sensors, the continuous backup copying to a storage medium of
the data flow within a computer, and many other applications require the transfer of real-time data at
a high rate. For example, to support real-time human perception of the data, multimedia applications
have to make sure that enough data is being continuously received without any noticeable time lag.

We are concerned with the case when data streaming involves a multimedia application connected to
a service running on a computer cloud. The stream could originate from the cloud, as is the case of the
iCloud service provided by Apple, or could be directed toward the cloud, as in the case of a real-time
data collection and analysis system.

Data streaming involves three entities: the sender, a communication network, and a receiver. The
resources necessary to guarantee the timing constraints include CPU cycles and buffer space at the
sender and the receiver, as well as network bandwidth. Adaptive data streaming determines the data rate
based on the available resources. Lower data rates imply lower quality, but they reduce the demands for
system resources.

Adaptive data streaming is possible only if the application permits tradeoffs between quantity and
quality. Such tradeoffs are feasible for audio and video streaming, which allow lossy compression, but
are not acceptable for many applications that process a continuous stream of data collected by sensors.

Data streaming requires accurate information about all resources involved, and this implies that the
network bandwidth has to be constantly monitored; at the same time, the scheduling algorithms should
be coordinated with memory management to guarantee the timing constraints. Adaptive data streaming
poses additional constraints because the data flow is dynamic. Indeed, once we detect that the network
cannot accommodate the data rate required by an audio or video stream, we have to reduce the data
rate; thus, to convert to a lower quality audio or video. Data conversion can be done on the fly and, in
this case, the data flow on the cloud has to be changed.

Accommodating dynamic data flows with timing constraints is nontrivial; only about 18% of the top
100 global video Web sites use adaptive bit rate (ABR) technologies for streaming [336].

This application stores the music files in S3 buckets, and the audio service runs on the EC2 platform.
In EC2 each virtual machine functions as a virtual private server and is called an instance; an instance
specifies the maximum amount of resources available to an application, the interface for that instance,
and the cost per hour.

EC2 allows the import of virtual machine images from the user environment to an instance through
a facility called VM import. It also distributes automatically the incoming application traffic among
multiple instances using the elastic load-balancing facility. EC2 associates an elastic IP address with
an account; this mechanism allows a user to mask the failure of an instance and remap a public IP
address to any instance of the account, without the need to interact with the software support team.

Adaptive audio streaming involves a multi-objective optimization problem. We want to convert the
highest-quality audio file stored on the cloud to a resolution corresponding to the rate that can be
sustained by the available bandwidth; at the same time, we want to minimize the cost on the cloud site

11.12 A Cloud Service for Adaptive Data Streaming 353

and minimize the buffer requirements for the mobile device to accommodate the transmission jitter.
Finally, we want to reduce to a minimum the startup time for the content delivery.

A first design decision is whether data streaming should only begin after the conversion from the
WAV to MP3 format has been completed or it should proceed concurrently with conversion – in other
words, start as soon as several MP3 frames have been generated. Another question is whether the
converted music file should be saved for later use or discarded.

To answer these questions, we experimented with conversion from the highest-quality audio files,
which require a 320 Kbps data rate, to lower-quality files corresponding to 192, 128, 64, 32, and finally
16 Kbps. If the conversion time is small and constant there is no justification for pipelining data
conversion and streaming, a strategy that complicates the processing flow on the cloud. It makes sense
to cache the converted copy for a limited period of time with the hope that it will be reused in the future.

Another design decision is how the two services should interact to optimize performance. Two
alternatives come to mind:

1. The audio service running on the EC2 platform requests the data file from the S3, converts it, and,
eventually, sends it back. The solution involves multiple delays and it is far from optimal.

2. Mount the S3 bucket as an EC2 drive. This solution reduces considerably the start-up time for audio
streaming.

The conversion from a high-quality audio file to a lower-quality, thus a lower-bit-rate, file is performed
using the LAME library.

The conversion time depends on the desired bitrate and the size of the original file. Tables 11.2, 11.3,
11.4, and 11.5 show the conversion time in seconds when the source MP3 files are of 320 Kbps and 192
Kbps, respectively. The sizes of the input files are also shown.

The platforms used for conversion are (a) the EC2 t1.micro server for the measurements reported
in Tables 11.2 and 11.3 and (b) the EC2 c1.medium for the measurements reported in Tables 11.4 and
11.5. The instances run the Ubuntu Linux operating system.

The results of our measurements when the instance is the t1.micro server exhibit a wide range of
conversion times, 13–80 seconds, for the large audio file of about 6.7 MB when we convert from 320
to 192 Kbps. A wide range, 13–64 seconds, is also observed for an audio file of about 4.5 MB when

Table 11.2 Conversion time in seconds on a EC2 t1.micro server platform. The source file is
of the highest audio quality, 320 Kbps. The individual conversions are labeled C1 to C10; T c
is the mean conversion time.
Bit Rate Audio File C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 T c
(Kbps) Size (MB)

192 6.701974 73 43 19 13 80 42 33 62 66 36 46.7
128 4.467982 42 46 64 48 19 52 52 48 48 13 43.2
64 2.234304 9 9 9 9 10 26 43 9 10 10 14.4
32 1.117152 7 6 14 6 6 7 7 6 6 6 7.1
16 0.558720 4 4 4 4 4 4 4 4 4 4 4

354 CHAPTER 11 Cloud Application Development

Table 11.3 Conversion time in seconds on a EC2 t1.micro server platform. The source file is
of high audio quality, 192 Kbps. The individual conversions are labeled C1 to C10; T c is the
mean conversion time.
Bit Rate Audio File C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 T c
(Kbps) Size (MB)

128 4.467982 14 15 13 13 73 75 56 59 72 14 40.4
64 2.234304 9 9 9 32 44 9 23 9 45 10 19.9
32 1.117152 6 6 6 6 6 6 20 6 6 6 7.4
16 0.558720 6 6 6 6 6 6 20 6 6 6 5.1

Table 11.4 Conversion time Tc in seconds on a EC2 c1.medium platform. The source file is of
the highest audio quality, 320 Kbps. The individual conversions are labeled C1 to C10; T c is
the mean conversion time.
Bit Rate Audio File C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 T c
(Kbps) Size (MB)

192 6.701974 15 15 15 15 15 15 15 15 15 15 15
128 4.467982 15 15 15 15 15 15 15 15 15 15 15
64 2.234304 11 11 11 11 11 11 11 11 11 11 11
32 1.117152 7 7 7 7 7 7 7 7 7 7 7
16 0.558720 4 4 4 4 4 4 4 4 4 4 4

Table 11.5 Conversion time in seconds on a EC2 c1.medium platform. The source file is of
high audio quality, 192 Kbps. The individual conversions are labeled C1 to C10; T c is the
mean conversion time.
Bit Rate Audio File C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 T c
(Kbps) Size (MB)

128 4.467982 15 15 15 15 15 15 15 15 15 15 15
64 2.234304 10 10 10 10 10 10 10 10 10 10 10
32 1.117152 7 7 7 7 7 7 7 7 7 7 7
16 0.558720 4 4 4 4 4 4 4 4 4 4 4

we convert from 320 to 128 Kbps. For poor-quality audio the file size is considerably smaller, about
0.56 MB, and the conversion time is constant and small, 4 seconds. Figure 11.15 shows the average
conversion time for the experiments summarized in Tables 11.2 and 11.3. It is somewhat surprising that

11.12 A Cloud Service for Adaptive Data Streaming 355

FIGURE 11.15

The average conversion time on a EC2 t1.micro platform. The bars at left and right correspond to the
original file at the highest resolution (320 Kbps data rate) and next highest resolution (192 Kbps data rate),
respectively.

FIGURE 11.16

The average conversion time on a EC2 c1.medium platform. The bars at left and right correspond to the
original file at the highest resolution (320 Kbps data rate) and next highest resolution (192 Kbps data rate),
respectively.

the average conversion time is larger when the source file is smaller, as is the case when the target bit
rates are 64, 32, and 16 Kbps.

Figure 11.16 shows the average conversion time for the experiments summarized in Tables 11.4
and 11.5.

356 CHAPTER 11 Cloud Application Development

The results of our measurements when the instance runs on the EC2 c1.medium platform show
consistent and considerably lower conversion times; Figure 11.16 presents the average conversion time.

To understand the reasons for our results, we took a closer look at the two types of AWS EC2
instances, “micro” and “medium,” and their suitability for the adaptive data-streaming service. The
t1.micro supports bursty applications, with a high average-to-peak ratio for CPU cycles, e.g., transaction-
processing systems. The Amazon Elastic Block Store (EBS) provides block-level storage volumes; the
“micro” instances are only EBS-backed.

The “medium” instances support compute-intensive application with a steady and relatively high
demand for CPU cycles. Our application is compute-intensive; thus, there should be no surprise that
our measurements for the EC2 c1.medium platform show consistent and considerably lower conversion
times.

11.13 Cloud-based optimal FPGA synthesis
In this section we discuss another class of application that could benefit from cloud computing. In
Chapter 4 we discussed cloud applications in computational science and engineering. The benchmarks
presented in Section 4.9 compared the performance of several codes running on a cloud with runs
on supercomputers; as expected, the results showed that a cloud is not an optimal environment for
applications exhibiting fine- or medium-grained parallelism. Indeed, the communication latency is
considerably larger on a cloud than on a supercomputer with a more expensive, custom interconnect.
This means that we have to identify cloud applications that do not involve extensive communication or
applications exhibiting coarse-grained parallelism.

A cloud is an ideal running environment for scientific applications that involve model development.
In this case, multiple cloud instances could concurrently run slightly different models of the system.
When the model is described by a set of parameters, the application can be based on the SPMD paradigm
combined with an analysis phase when the results from the multiple instances are ranked based on a
well-defined metric. In this case there is no communication during the first phase of the application,
when partial results are produced and then written to the storage server. Then individual instances
signal the completion and a new instance to carry out the analysis and display the results is started. A
similar strategy can be used by engineering applications of mechanical, civil, electrical, electronic, or
any other system design area. In this case, the multiple instances run concurrent design for different
sets of parameters of the system.

A cloud application for optimal design of Field-Programmable Gate Arrays (FPGAs) is discussed
next. As the name suggests, an FPGA is an integrated circuit designed to be configured, adapted, or
programmed in the field to perform a well-defined function [311]. Such a circuit consists of logic blocks
and interconnects that can be “programmed” to carry out logical and/or combinatorial functions (see
Figure 11.17).

The first commercially viable FPGA, the XC2064, was produced in 1985 by Xilinx. Today FPGAs are
used in many areas, including digital signal processing, CRNs, aerospace, medical imaging, computer
vision, speech recognition, cryptography, and computer hardware emulation. FPGAs are less energy
efficient and slower than application-specific integrated circuits (ASICs). The widespread use of FPGAs
is due to their flexibility and the ability to reprogram them.

11.14 Exercises and Problems 357

P9P0 P1 P8

P29 P28 P21 P20

P39

P38

P30

P31

P10

P11

P19

P18

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Switch
block

Switch
block

Switch
block

Switch
block

FIGURE 11.17

The structure of an FPGA with 30 pins, P0–P29; nine logic blocks; and four switch blocks.

Hardware description languages (HDLs) such as VHDL and Verilog are used to program FPGAs.
HDLs are used to specify a register-transfer level (RTL) description of the circuit. Multiple stages are
used to synthesize FPGAs.

A cloud-based system was designed to optimize the routing and placement of components. The basic
structure of the tool is shown in Figure 11.18. The system uses the PlanAhead tool from Xilinx (see
www.xilinx.com) to place system components and route chips on the FPGA logical fabric. The
computations involved are fairly complex and take a considerable amount of time; for example, a fairly
simple system consisting of a software core processor (Microblaze), a block random access memory
(BRAM), and a couple of peripherals can take up to 40 minutes to synthesize on a powerful workstation.
Running N design options in parallel on a cloud speeds up the optimization process by a factor close to N.

11.14 Exercises and problems
Problem 1. Establish an AWS account. Use the AWS Management Console to launch an EC2 instance

and connect to it.

Problem 2. Launch three EC2 instances. The computations carried out by the three instances should
consist of two phases, and the second phase should be started only after all instances

358 CHAPTER 11 Cloud Application Development

Cloud
instance

Cloud
instance

Cloud
instance

EC2

C
L
O
U
D

C
L
I
E
N
T

(1) Boot N instances on EC2

(2) Send user data, project name, and global queue URL

(3) Store work packages

(4) Pull work packages

SQS
(5) Signal completion

(6) Wait until all instances
have finished

(7) Store results
(8) Request results
and analyze them

(9) Cleanup

S3

S3

FIGURE 11.18

The architecture of a cloud-based system to optimize the routing and placement of components on an FPGA.

have finished the first stage. Design a protocol and use Simple Queue Service (SQS) to
implement the barrier synchronization after the first phase.

Problem 3. Use the Zookeeper to implement the coordination model in Problem 2.

Problem 4. Use the Simple Workflow Service (SWF) to implement the coordination model in Problem
2. Compare the three methods.

Problem 5. Upload several (10 – 20) large image files to an S3 bucket. Start an instance that retrieves
the images from the S3 bucket and compute the retrieval time. Use the ElastiCache service
and compare the retrieval time for the two cases.

Problem 6. Numerical simulations are ideal applications for cloud computing. Output data analysis
of a simulation experiment requires the computation of confidence intervals for the mean
for the quantity of interest [210]. This implies that one must run multiple batches of
simulation, compute the average value of the quantity of interest for each batch, and then
calculate, say, 95% confidence intervals for the mean. Use the CloudFormation service to
carry out a simulation using multiple cloud instances that store partial results in S3 and
then another instance that computes the confidence interval for the mean.

Problem 7. Run an application that takes advantage of the Autoscaling service.

11.14 Exercises and Problems 359

Problem 8. Use the Elastic Beanstalk service to run an application and compare it with the case when
the Autoscaling service was used.

Problem 9. Design a cloud service and a testing environment. Use the Elastic Beanstalk service to
support automatic scaling up and down, and use the Elastic Load Balancer to distribute
the incoming service request to different instances of the application.

This page is intentionally left blank

Literature

[1] W. M. P. van der Aalst, A. H. ter Hofstede, B. Kiepuszewski, and A. P. Barros. “Workflow patterns.” Technical
Report, Eindhoven University of Technology, 2000.

[2] R. Abbott. “Complex systems engineering: putting complex systems to work,” Complexity, 13(2):10–11,
2007.

[3] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. “Performance guarantees for web server end-system: a control
theoretic approach.” IEEE Trans. Parallel & Distributed Systems, 13(1):80–96, 2002.

[4] B. Abrahao, V. Almeida, J. Almeida, A. Zhang, D. Beyer, and F. Safai. “Self-adaptive SLA-driven capac-
ity management for Internet srvices.” Proc. IEEE/IFIP Network Operations & Management Symposium
(NOMS06), pp. 557–68, 2006.

[5] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. “RACS: A case for cloud storage diversity,” Proc.
ACM Symp. on Cloud Computing (SOCC), (CD Proceedings) ISBN: 978-1-4503-0036-0.

[6] D. Abts. “The Cray XT4 and Seastar 3-D torus interconnect.” Encyclopedia of Parallel Computing, Part 3,
David Padua, Ed., pp. 470–477, Springer, 2011.

[7] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. “Energy proportional datacenter networks.” ACM
IEEE Int. Symp. on Comp. Arch. (ISCA’10), pp. 338–347, 2010.

[8] L. A. Adamic, R. M. Lukose, A. R. Puniyami, and B. A. Huberman. “Search in power-law networks.”
Physical Review E, 64(4):046135, 2001.

[9] B. Addis, D. Ardagna, B. Panicucci, and L. Zhang. “Autonomic management of cloud service centers with
availability guarantees.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 220–227, 2010.

[10] R. Albert, H. Jeong, and A.-L. Barabási. “The diameter of the World Wide Web.” Nature, 401:130–131,
1999.

[11] R. Albert, H. Jeong, and A.-L. Barabási. “Error and attack tolerance of complex networks.” Nature,
406:378–382, 2000.

[12] R. Albert and A.-L. Barabási. “Statistical mechanics of complex networks.” Reviews of Modern Physics,
72(1):48–97, 2002.

[13] “Amazon elastic compute cloud.” http://aws.amazon.com/ec2/.
[14] “Amazon virtual private cloud.” http://aws.amazon.com/vpc/.
[15] “Amazon Web services: Overview of security processes.” http://s3.amazonaws.com.
[16] “Amazon CloudWatch.” http://aws.amazon.com/cloudwatch.
[17] “Amazon elastic block store (EBS).” http://aws.amazon.com/ebs/.
[18] “AWS management console.” http://aws.amazon.com/console/.
[19] T. Andrei. “Cloud computing challenges and related security issues.” http://www1.cse.wustl.edu/jain/

cse571-09/ftp/cloud/index.html.
[20] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwing, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu.

“Web Service Agreement Specification.” http://www.gridforum.org/Meetings/GGF11/Documents/
draftggfgraap-agreement.pdf, 2004.

[21] D. P. Anderson. “BOINC: A system for public-resource computing and storage.” Proc. 5th IEEE/ACM Int.
Workshop on Grid Computing, pp. 4–10, 2004.

[22] R. Aoun, E. A. Doumith, and M. Gagnaire. “Resource provisioning for enriched services in cloud environ-
ment.” Proc. IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 296–303, 2010.

[23] D. Ardagna, M. Trubian, and L. Zhang. “SLA based resource allocation policies in autonomic environments.”
J. Parallel Distrib. Comp., 67(3):259–270, 2007.

Cloud Computing. http://dx.doi.org/10.1016/B978-0-12-404627-6.00012-9
© 2013 Elsevier Inc.. All rights reserved.

361

362 Literature

[24] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang. “Energy-aware autonomic resource allocation in
multi-tier virtualized environments.” IEEE Trans. on Services Computing, 5(1):2–19, 2012.

[25] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Paterson, A. Rabkin,
I. Stoica, and M. Zaharia. “Above the clouds: a Berkeley view of cloud computing.” Technical Report
UCB/EECS-2009-28, 2009. Also http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf.

[26] D. Artz and Y. Gil. “A survey of trust in computer science and the semantic web.” J. of Web Semantics:
Science, Services, and Agents on the World Wide Web, pp. 58–71, 2007.

[27] M. Asay. “An application war is brewing in the cloud.” http://news.cnet.com/8301-13505_3-10422861-16.
html.

[28] M. Auty, S. Creese, M. Goldsmith, and P. Hopkins. “Inadequacies of current risk controls for the cloud.”
Proc. IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 659–666, 2010.

[29] L. Ausubel and P. Cramton. “Auctioning many divisible goods.” J. European Economic Assoc., 2
(2–3):480–493, 2004.

[30] L. Ausubel, P. Cramton, and P. Milgrom. “The clock-proxy auction: a practical combinatorial auction design.”
Chapter 5, in Combinatorial Auctions, P. Cramton, Y. Shoham, and R. Steinberg, Eds., MIT Press, 2006.

[31] A. Avisienis, J. C. Laprie, B. Randell, and C. Landwehr. “Basic concepts and taxonomy of dependable and
secure computing.” IEEE Trans. Dependable and Secure Computing, 1(1):11–33, 2004.

[32] M. Azambuja, R. Pereira, K. Breitman, and M. Endler. “An architecture for public and open submission
systems in the cloud.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 513–517, 2010.

[33] Y. Azar, A.Z. Broder, A.R. Karlin, N. Linial, and S. Phillips. “Biased random walks.” Proc STOC92, 24th
Annual Symp on Theory of Computing, pp. 1–9, 1992.

[34] Ö Babaoğlu and K. Marzullo. “Consistent global states.” In Distributed Systems, Sape Mullender, Ed.,
Addison Wesley, Reading, Mass., pp. 55–96, 1993.

[35] M. J. Bach, M. W. Luppi, A. S. Melamed, and K. Yueh. “A Remote-file cache for RFS.” Proc. USENIX
Summer 1987 Conf., pp. 275–280, 1987.

[36] A. A. Baker. “Monte Carlo simulations of radial distribution functions for a proton-electron plasma.” Aust.
J. Phys. 18:119–133, 1965.

[37] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson, J.-M. Léon, Y. Li, A. Lloyd, and
V. Yushprakh. “Megastore: Providing scalable, highly available storage for interactive services.” Proc. 5th
Biennial Conf. on Innovative Data Systems Research (CIDR’11), pp. 223–234, 2011.

[38] M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro. “A security analysis of Amazon’s elastic
compute cloud service.” Proc. 27th Annual ACM Symp. on Applied Computing, pp. 1427–1434, 2012.

[39] A-L. Barabási and R. Albert. “Emergence of scaling in random networks,” Science, 286(5439):509–512,
1999.

[40] A-L. Barabási, R. Albert, and H. Jeong. “Scale-free theory of random networks; the topology of World Wide
Web.” Physica A, 281:69–77, 2000.

[41] P. Barham. B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
“Xen and the art of virtualization.” Proc. 19th ACM Symp. on Operating Systems Principles (SOSP’03), pp.
164–177, 2003.

[42] L. A. Barroso and U. Hözle. “The case for energy-proportional computing.” IEEE Computer, 40(12):33–7,
2007.

[43] H. Bauke. “Parameter estimation for power-law distributions by maximum likelihood methods.” The Euro-
pean Physical Journal B, 58(2):167–173, 2007.

[44] A. Bavier, T. Voigt, M. Wawrzoniak, L. Peterson, and P. Gunningberg. “SILK: Scout paths in the Linux
kernel.” Technical Report 2002-009, Uppsala University, Department of Information Technology, Feb. 2002.

[45] G. Bell. “Massively parallel computers: why not parallel computers for the masses?” Proc. 4-th Symp. on
Frontiers of Massively Parallel Computing, pp. 292–297, 1992.

363Literature

[46] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your Mathematical Plays (Second Edition).
A K Peters/CRC Press, 2004.

[47] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow. “Blueprint for the Intercloud: protocols
and formats for cloud computing interoperability.” Proc. Internet and Web Applications and Services, ICIW
’09, pp. 328–336, 2009.

[48] D. Bernstein and D. Vij. “Intercloud security considerations.” Proc. IEEE 2nd Int. Conf. on Cloud Computing
Technology and Science, pp. 537–544, 2010.

[49] D. Bernstein, D. Vij, and S. Diamond. “An Intercloud cloud computing economy: technology, governance,
and market blueprints.” Proc. SRII Global Conference, pp. 293–299, 2011.

[50] D. Bertsekas and R. Gallagher. Data Networks (Second Edition). Prentice Hall, 1992.
[51] S. Bertram, M. Boniface, M. Surridge, N. Briscombe, and M. Hall-May. “On-demand dynamic security for

risk-based secure collaboration in clouds.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 518–525,
2010.

[52] S. Bhattacharjee and D. C. Marinescu. “A cloud service for trust management in cognitive radio networks.”
Int. J. of Cloud Computing, 2013 (in print).

[53] B. Bollobás. Random Graphs, Academic Press, London, 1985.
[54] K. Boloor, R. Chirkova, Y. Viniotis, and T. Salo. “Dynamic request allocation and scheduling for context

aware applications subject to a percentile response time SLA in a distributed cloud.” Proc. IEEE 2nd Int.
Conf. on Cloud Computing Technology and Science, pp. 464–472, 2010.

[55] I. Brandic, S. Dustdar, T. Ansett, D. Schumm, F. Leymann, and R. Konrad. “Compliant cloud computing
(C3): Architecture and language support for user-driven compliance management in clouds.” Proc. IEEE
3rd Int. Conf. on Cloud Computing, pp. 244–251, 2010.

[56] S. Brandt, S. Banachowski, C. Lin, and T. Bisson. “Dynamic integrated scheduling of hard real-time, soft
real-time, and non-real-time processes.” Proc. IEEE Real-Time Sys. Symp. (RTSS 2003), pp. 396–409, 2003.

[57] N. F. Britton. Essential Mathematical Biology. Springer, 2004.
[58] M. Buddhikot and K. Ryan. “Spectrum management in coordinated dynamic spectrum access based cellular

networks.” Proc. Int. Symp. New Fromtiers in Dynamic Spectrum Access Networks, pp. 299–307, 2005.
[59] C. Bunch, N. Chohan, C. Krintz, J. Chohan, J. Kupferman, P. Lakhina, Y. Li, and Y. Nomura. “An evaluation

of distributed datatstores using the AppScale cloud platform.” Proc. IEEE 3rd Int. Conf. on Cloud Computing,
pp. 305–312, 2010.

[60] A. W. Burks, H. H. Goldstine, and J. von Neumann. “Preliminary Discussion of the Logical Design of an
Electronic Computer Instrument.” Report to the U.S. Army Ordnance Department, 1946. Also in: Papers of
John von Neumann. W. Asprey and A. W. Burks, Eds., 97–146, MIT Press, Cambridge, MA, 1987.

[61] M. Burrows. “The Chubby lock service for loosely coupled distributed systems.” Proc. Symp. OS Design
and Implementation (OSDI06), pp. 335–350, 2006.

[62] R. Buyya, R. Ranjan, and R. Calheiros. ”Intercloud: Utility-oriented federation of cloud computing envi-
ronments for scaling of application services.” Proc. Int. Conf. on Algorithms and Architectures for Parallel
Processing (ICA3PP-10), pp. 19–24, 2010.

[63] C. Cacciari, F. D’Andria, M. Gonzalo, B. Hagemeier, D. Mallmann, J. Martrat, D. G. Perez, A. Rumpl,
W. Ziegler, and C. Zsigri. “elasticLM: A novel approach for software licensing in distributed computing
infrastructures.” Proc. IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 67–74, 2010.

[64] A. G. Carlyle, S. L. Harrell, and P. M. Smith. “Cost-effective HPC: The community or the cloud?” Proc.
IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 169–176, 2010.

[65] E. Caron, F. Desprez, and A. Muresan. “Forecasting for grid and cloud computing on-demand resources based
on pattern matching.” Proc. IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 456–463,
2010.

[66] R. Cattell. “Scalable SQL and NoSQL data stores.” http://cattell.net/datastores/Datastores.pdf, 2011.

364 Literature

[67] A. Celesti, F. Tusa, M. Villari, and A. Puliafito. “How to enhance cloud architectures to enable cross-
federation.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 337–345, 2010.

[68] R. Chen, J.-M. Park, and K. Bian. “Robust distributed spectrum sensing in cognitive radio networks.” Proc.
IEEE Infocom, pp. 1876–1884, 2008.

[69] G. J. Chaitin. “On the length of programs for computing binary sequences.” J. Assoc. Comp. Mach.
13:547–69, 1966.

[70] A. Chandra, P. Goyal, and P. Shenoy. “Quantifying the benefits of resource multiplexing in on-demand data
centers.” Proc. 1st Workshop on Algorithms and Architecture for Self-Managing Systems, 2003.

[71] T. D. Chandra, R. Griesemer, and J. Redstone. “Paxos made live: an engineering perspectice.” Proc. Symp.
Principles of Distributed Computing, pp. 398–407, 2007.

[72] K. M. Chandy and L. Lamport. “Distributed snapshots: determining global states of distributed systems.”
ACM Trans. on Computer Systems, 3(1):63–75, 1985.

[73] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. “BigTable: a distributed storage system for structured data.” Proc. Conf. OS Design and
Implementation (OSDI06), pp. 205–218, 2006.

[74] V. Chang, G. Wills, and D. De Roure. “A review of cloud business models and sustainability.” Proc. IEEE
3rd Int. Conf. on Cloud Computing, pp. 43–50, 2010.

[75] F. Chang, J. Ren, and R. Viswanathan. “Optimal resource allocation in clouds.” Proc. IEEE 3rd Int. Conf.
on Cloud Computing, pp. 418–425, 2010.

[76] K. Chard, S. Caton, O. Rana, and K. Bubendorfer. “Social cloud: Cloud computing in social networks.”
Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 99–106, 2010.

[77] J. Chase. “Orca technical note: guests and guest controllers.” http://www.cs.duke.edu/nicl/pub/papers/
control.pdf, 2008.

[78] A. Chazalet. “Service level checking in the cloud computing context.” Proc. IEEE 3rd Int. Conf. on Cloud
Computing, pp. 297–304, 2010.

[79] P. M. Chen and B. D. Noble. “When virtual is better than real.” Proc. 8-th Workshop on Hot Topics in
Operating Systems, pp. 133–141, 2001.

[80] H. Chen, P. Liu, R. Chen, and B. Zang. “When OO meets system software: Rethinking the design of VMMs.”
Technical Report PPITR-2007-08003, pp. 1–9, 2007, Fudan University, Parallel Processing Institute. Also,
http://ppi.fudan.edu.cn/system/publications/paper/OVM-ppi-tr.pdf.

[81] T. M. Chen and S. Abu-Nimeh. “Lessons from Stuxnet.” Computer, 44(4):91–93, 2011.
[82] D. Chiu and G. Agarwal. “ Evaluating cache and storage options on the Amazon Web Services cloud.” Proc.

CCGRID 2011, pp. 362 –371, 2011.
[83] R. Chow, P. Golle, M. Jackobsson, E. Shi, J. Staddon, R. Masouka, and J. Mollina. “Controlling data on the

cloud: outsourcing computations without outsourcing ccontrol.” Proc. Cloud Computing Security Workshop
(CCSW09), pp. 85–90, 2009.

[84] B. Clark, T. Deshane, E. Dow, S. Evabchik, M. Finlayson, J. Herne, and J. Neefe Matthews. “Xen and
the art of repeated research.” Proc. USENIX Annual Technical Conf. (ATEC’04), pp. 135–144, 2004. Also,
http://web2.clarkson.edu/class/cs644/xen/files/repeatedxen-usenix04.pdf.

[85] R. A. Clarke and R. K. Knake. Cyber War: The Next Threat to National Security and What to Do About It.
Harper Collins, 2012.

[86] A. Clauset, C. R. Shalizi, and M. E. J. Newman. “Power-law distributions in empirical data.” SIAM Review,
51:661–704, 2007.

[87] E. F. Codd. “A Relational model of data for large shared data banks.” Comm. ACM, 13(6):
377–387, 1970.

[88] R. Cohen and S. Havlin. “Scale-free networks are ultrasmall.” Physical Review Letters, 90(5):058701, 2003.

365Literature

[89] L. Colitti, S. H. Gunderson, E. Kline, and T. Refice. “Evaluating IPv6 adoption in the Internet.” Proc. Passive
and Active Measurement Conference, PAM 2010, pp. 141–150, 2010.

[90] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan, P. Loscocco, and A. Warfield. “Breaking
up is hard to do: security and functionality in a commodity hypervisor.” Proc. Symp. Operating Systems
Principles, pp. 189–202, 2011.

[91] F. J. Corbatò and V. A. Vyssotsky. “Introduction and overview of the MULTICS system.” Proc AFIPS, Fall
Joint Computer Conference, pp. 185–196, 1965.

[92] T. M. Cover and J. A. Thomas. Elements of Information Theory (Second Edition). Wiley-Interscience, 2006.
[93] P. Cramton, Y. Shoham, and R. Steinberg, Eds., Combinatorial Auctions, MIT Press, 2006.
[94] F. Cristian, H. Aghili, R. Strong, and D. Dolev. “Atomic broadcast from simple message diffusion to Byzantine

agreement.” Proc. Int. Conf. on Fault Tolerant Computing, IEEE Press, pp. 200–206, 1985.
[95] J. P. Crutchfield and J. P. Shalizi. “Thermodynamic depth of causal states: objective complexity via minimal

representation,” Physical Review E, 59:275–83, 1999.
[96] Cloud Security Alliance. “Security guidance for critical areas of focus in cloud computing (v2.1).”

https://cloudsecurityalliance.org/csaguide.pdf, 2009.
[97] Cloud Security Alliance. “Top threats to cloud computing V1.0.” http://cloudsecurityalliance.org/topthreats/

csathreats.v1.0.pdf, 2010.
[98] Cloud Security Alliance. “Security guidance for critical areas of focus in cloud computing V3.0.”

https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf, 2011.
[99] H. A. David. Order Statistics, Wiley, 1981.

[100] J. Dean and S. Ghernawat. “MapReduce: simplified data processing on large clusters.” Proc. 6th Symp. on
Operating Systems Design and Implementation, OSDI04, 2004.

[101] Y. Demchenko, C. de Laat, and D. R. Lopes. “Security services lifecycle management in on-demand infras-
tructure services provisioning.” Proc. IEEE 2nd Int. Conf. on Cloud Computing Technology and Science,
pp. 644–650, 2010.

[102] A. Demers, S. Keshav, and S. Shenker. “Analysis and simulation of a fair queuing algorithm.” Proc. ACM
SIGCOMM’89 Symp. on Comm. Architectures & Protocols, pp. 1–12, 1989.

[103] M. Devarakonda, B. Kish, and A. Mohindra. “Recovery in the Calypso file system.” ACM Trans. Comput.
Syst., 14(3):287–310, 1996. Also http://www.cc.gatech.edu/classes/AY2008/cs6210a_fall/recovery.pdf.

[104] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali. “Cloud computing: distributed Internet
computing for IT and scientific research.” IEEE Internet Computing, 13(5):10–13, 2009.

[105] P. Donnelly, P. Bui, and D. Thain. “Attaching cloud storage to a campus grid using Parrot, Chirp, and Hadoop.”
Proc. IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 488–495, 2010.

[106] T. Dörnemann, E. Juhnke, T. Noll, D. Seiler, and B. Freieleben. “Data flow-driven scheduling of BPEL
workflows using cloud resources.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 196–203, 2010.

[107] K. J. Duda and R. R. Cheriton. “Borrowed-Virtual-Time (BVT) scheduling: supporting latency-sensitive
threads in a general-purpose scheduler.” Proc. 17th Symp. on Op. Sys. Principles, pp. 261–276, 1999.

[108] N. Dukkipati, T. Refice, Y.-C. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain, and N. Sutin. “An argu-
ment for increasing TCP’s initial congestion window.” ACM SIGCOMM Computer Comm. Review, 40(3):
27–33, 2010.

[109] X. Dutreild, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck. “From data center resource allocation to
control theory and back.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 410–417, 2010.

[110] G. Dyson. Turing’s Cathedral: The Origins of the Digital Universe, Pantheon, 2012.
[111] D. Ebneter, S. Gatziu Grivas, T. U. Kumar, and H. Wache. “Enterprise architecture frameworks for enabling

cloud computing.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 542–543, 2010.
[112] V. M. Eguiluz and K. Klemm. “Epidemic threshold in structured scale-free networks.” arXiv:cond-mat/

0205439v.1, 2002.

366 Literature

[113] J. Ejarque, R. Sirvent, and R. M. Badia. “A multi-agent approach for semantic resource allocation.” Proc
IEEE 2nd Int. Conf. on Cloud Computing Technology and Science. pp. 335–342, 2010.

[114] M. Elhawary and Z. J. Haas. “Energy-efficient protocol foe cooperative networks.” IEEE/ACM Trans. on
Networking, 19(2):561–574, 2011.

[115] Enterprise Management Associates. “How to make the most of cloud computing without sacrificing con-
trol.” White paper, prepared for IBM, pp. 18, September 2010. http://www.siliconrepublic.com/reports/
partner/26-ibm/report/311-how-to-make-the-most-of-clo/.

[116] P. Erdös and A. Rényi. “On random graphs.” Publicationes Mathematicae, 6:290–7, 1959.
[117] P. Erdös and T. Gallai. “Graphs with points (vertices) of prescribed degree (Gráfok elört fokú pontokkal).”

Mat. Lapok 11:264–274, 1961; Zentralblatt Math. 103.39701.
[118] R. M. Esteves and C. Rong. “Social impact of privacy in cloud computing.” Proc. IEEE 2nd Int. Conf. on

Cloud Computing Technology and Science, pp. 593–596, 2010.
[119] C. Evanghelinos and C. N. Hill. “Cloud computing for parallel scientic HPC applications: feasibility of run-

ning coupled atmosphere-ocean climate models on Amazon’s EC2” Cloud Computing and Its Applications,
CCA-08, http://www.cca08.org/papers/Paper34-Chris-Hill.pdf, 2008.

[120] A. D. H. Farwell, M. J. Sergot, M. Salle, C. Bartolini, D. Tresour, A. Christodoulou. “Performance monitoring
of service-level agreements for utility computing.” Proc IEEE. Int. Workshop on Electronic Contracting
(WEC04), 2004.

[121] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini. “QoS-aware clouds.” Proc. IEEE 3rd Int.
Conf. on Cloud Computing, pp. 321–328, 2010.

[122] Federal Trade Commission. “Privacy online: fair information practice in the electronic marketplace.”
A Federal Trade Commission Report to Congress, Washington, DC, 2000.

[123] M. J. Fischer, N. A. Lynch, and M. S. Paterson. “Impossibility of distributed consensus with one faulty
process.” J. ACM, 32(2):374–382, 1985.

[124] http://www.freebsd.org/doc/handbook/jails.html.
[125] S. Floyd and Van Jacobson. “Link-sharing and resource management models for packet networks.”

IEEE/ACM Trans. on Networking, 3(4):365–386, 1995.
[126] B. Ford. “Icebergs in the clouds: the other risks of cloud computing.” Proc. 4th Workshop on Hot Topics in

Cloud Computing, arXiv:1203.1979v2, 2012.
[127] M. Franklin, A. Halevy, and D. Maier. “From databases to dataspaces: A new abstraction for information

management.” SIGMOD Record, 34(4):27–33, 2005.
[128] E. Gafni and D. Bertsekas. “Dynamic control of session input rates in communication networks.” IEEE

Trans. on Automatic Control, 29(10):1009–1016, 1984.
[129] G. Ganesan and Y. G. Li. “Cooperative spectrum sensing in cognitive radio networks.” Proc. IEEE Symp.

New Frontiers in Dynamic Spectrum Access Networks (DySPAN05), pp. 137–143, 2005.
[130] A. G. Ganek and T. A. Corbi. “The dawning of the autonomic computing era.” IBM Systems Journal,

42(1):5–18, 2003. Also, https://www.cs.drexel.edu/jsalvage/Winter2010/CS576/autonomic.pdf.
[131] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. “Terra: a virtual machine-based platform for

trusted computing.” Proc. ACM Symp. Operating Systems Principles, pp. 193–206, 2003.
[132] S. Garfinkel and M. Rosenblum. “When virtual is harder than real: security challenges in virtual machines

based computing environments.” Proc. Conf. Hot Topics in Operating Systems, pp. 20–25, 2005.
[133] S. Garfinkel. “An evaluation of Amazon’s grid computing services: EC2, S3, and SQS.” Technical Report,

TR-08-07, Harvard University, 2007.
[134] C. Gentry. “Fully hommomorphic encryption using ideal lattices.” Proc. Symp. on Theory of Computing

(STOC), pp. 169–178, 2009.
[135] C. Gkantsidis, M. Mihail, and A. Saberi. “Random walks in peer-to-peer networks.” Performance Evaluation,

63(3): 241–263, 2006.

367Literature

[136] S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google file system.” Proc. 19th ACM Symp. on Operating
Systems Principles (SOSP’03), p. 15, 2003.

[137] M. Gell-Mann. “Simplicity and complexity in the description of nature.” Engineering and Sciences, LI, vol.
3, California Institute of Technology, pp. 3–9, 1988.

[138] D. Gmach, S. Kompass, A. Scholz, M. Wimmer, and A. Kemper. “Adaptive quality of service management
for entreprize services.” ACM Trans. on the Web (TWEB), 2(1):243–253, 2009.

[139] D. Gmach, J. Rolia, and L. Cerkasova. “Satisfying service-level objectives in a self-managed resource pool.”
Proc. 3rd. Int. Conf. on Self-Adaptive and Self-Organizing Systems, pp. 243–253, 2009.

[140] K. I. Goh, B. Kahang, and D. Kim. “Universal behavior of load distribution in scale-free networks.” Physical
Review Letters, 87:278701, 2001.

[141] R. P. Goldberg. “Architectural principles for virtual computer systems.” Thesis, Harvard University, 1973.
[142] P. Goyal, X. Guo, and H. M. Vin. “A hierarchial CPU scheduler for multimedia operating systems.” Proc.

OSDI 96, Second USENIX Symp. on Operating Systems Design and Implementation, pp. 107–121, 1996.
[143] J. Gray. “The transaction concept: virtues and limitations.” Proc. 7 Int. Conf. on Very Large Databases,

pp. 144–154, 1981.
[144] J. Gray and D. Patterson. “A conversation with Jim Gray.” ACM Queue, 1(4):8–17, 2003.
[145] T. G. Griffn, F. B. Shepherd, and G. Wilfong. “The stable paths problem and interdomain routing.” IEEE/ACM

Trans. on Networking, 10(2):232–43, 2002.
[146] W. Gropp, E. Lusk, and A. Skjellum. Using MPI, MIT Press, 1994.
[147] N. Gruschka and M. Jensen. “Attack surfaces: A taxonomy for attacks on cloud services.” Proc. IEEE 3rd

Int. Conf. on Cloud Computing, pp. 276–279, 2010.
[148] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox. “MapReduce in the clouds for science.” Proc IEEE 2nd Int.

Conf. on Cloud Computing Technology and Science, pp. 565–572, 2010.
[149] I. Gupta, A. J. Ganesh, A.-M. Kermarrec. “Efficient and adaptive epidemic-style protocols for reliable and

scalable multicast.” IEEE Trans. on Parallel and Distributed Systems, 17(7):593–605, 2006.
[150] V. Gupta and M. Harchol-Balter. “Self-adaptive admission control policies for resource-sharing systems.”

Proc. 11th Int. Joint Conf. Measurement and Modeling Computer Systems (SIGMETRICS’09), pp. 311–322,
2009.

[151] J. O. Gutierrez-Garcia and K.- M. Sim. “Self-organizing agents for service composition in cloud computing.”
Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 59–66, 2010.

[152] F. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feldman,
J. Appelbaum, and E. W. Felten. “Lest we remember: cold boot attacks on encryption keys.” Proc. Usenix,
Securitry Symp., pp. 45–60, 2008.

[153] J. D. Halley and D. A. Winkler. “Classification of emegence and its relation to self-organization,” Complexity,
13(5):10–15, 2008.

[154] P. B. Hansen. “The evolution of operating systems.” In Classic Operating Systems: From Batch Processing
to Distributed Systems, pp. 1–36, Springer Verlag, 2000.

[155] R. F. Hartl, S. P. Sethi, and R. G. Vickson. “Survey of the maximum principles for optimal control problems
with state constraints.” SIAM Review, 37(2):181–218, 1995.

[156] T. Härder and A. Reuter. “Principles of transaction-oriented database recovery.” ACM Computing Surveys,
15(4):287–317, 1983.

[157] S. Harizopoulos, D. J. Abadi, S. Madden, M. Stonebreaker. “OLTP through the looking glass, and what we
found there.” Proc. SIGMOD Int. Conf. on Mangement of Data, pp. 981–992, 2008.

[158] K. Hasebe, T. Niwa, A. Sugiki, and K. Kato. “Power-saving in large-scale storage systems with data migra-
tion.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 266–273, 2010.

[159] R. L. Haskin. “Tiger Shark: a scalable file system for multimedia.” IBM Journal of Research and Development,
42(2):185–197, 1998.

368 Literature

[160] W. K. Hastings. “Monte Carlo sampling methods using Markov chains and their applications.” Biometrika,
57:97–109, 1970.

[161] S. Haykin. “Cognitive radio: brain empowered wireless communications.” IEEE J. of Selected Areas in
Comm. 23:201–220, 2005.

[162] J. L. Hellerstein. “Why feedback implementations fail: The importance of systematic testing.” 5th Int.
Workshop on Feedback Control Implementation and Design in Computing Systems and Networks (FeBID
2010), http://eurosys2010-dev.sigops-france.fr/workshops/FeBID2010/hellerstein.pdf.

[163] T. Hey, S. Tansley, and K. Tolle. “Jim Gray on eScience: a transformed scientific method.” In The fourth
paradigm: Data-intensive scientific discovery. Microsoft Research, 2009. Also, http://research.microsoft.
com/en-us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf.

[164] M. Hilbert and P. López. “The world’s technological capacity to store, communicate, and compute informa-
tion.” Science, 332(6025):60–65, 2011.

[165] M. Hill et al. “Design decisions in SPUR.” Computer, 9(11):8–22, 1986.
[166] Z. Hill and M. Humphrey. “CSAL: A cloud storage abstraction layer to enable portable cloud applications.”

Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 504–511, 2010.
[167] M. Hinchey, R. Sterritt, C. Rouff, J. Rash, and W. Truszkowski. “Swarm-based space exploration.” ERCIM

News 64, 2006.
[168] C. A. R. Hoare. “Communicating sequential processes.” Comm. ACM, 21(8):666–677, 1978.
[169] J. Hopfield. “Neural networks and physical systems with emergent collective computational abilities.” Proc.

National Academy of Science, 79, pp. 2554–8, 1982.
[170] J. H. Howard, M. L. Kazer, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Sidebotham, and M.

J. West. “Scale and performance in a distributed file system.” ACM Trans. on Comp. Systems, 6(1): 51–81,
1988.

[171] D. H. Hu, Y. Wang, and C.-L. Wang. “BetterLife 2.0: Large-scale social intelligence reasoning on cloud.”
Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 529–536, 2010.

[172] A. W. Hübler. “Understanding complex systems,” Complexity, 12(5):9–11, 2007.
[173] K. Hwang, G. Fox, and J. Dongarra. Distributed and Cloud Computing, Morgan-Kaufmann Publishers, 2011.
[174] G. Iachello and J. Hong. “End-user privacy in human-computer interaction.” Foundations and Trends in

Human-Computer Interactions, 1(1):1–137, 2007.
[175] IBM. “Tivoli performance analyzer.” www.ibm.com/software/tivoli/products/performance-analyzer, 2008.
[176] IBM Smart Business. “Dispelling the vapor around the cloud computing. Drivers, barriers and considera-

tions for public and private cloud adoption.” White Paper, 2010. //ftp.software.ibm.com/common/ssi/ecm/en/
ciw03062usen/CIW03062USEN.PDF.

[177] IBM. “General parallel file systems (version 3, update 4). Documentation Updates.” http://publib.boulder.
ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.gpfs.doc.

[178] IBM. “The evolution of storage systems.” IBM Research. Almaden Research Center Publications.
http://www.almaden.ibm.com/storagesystems/pubs.

[179] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. Wasserman, and N. J. Wright.
“Performance analysis of high-performance computing applications on the Amazon Web Services cloud.”
Proc. IEEE Second Int. Conf. on Cloud Computing Technology and Science, pp. 159–168, 2010.

[180] M. Jelasity, A. Montresor, and O. Babaoglu. “Gossip-based aggregation in large dynamic networks.” ACM
Trans. on Computer Systems, 23(3):219–252, 2005.

[181] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. “Gossip-based peer sampling.”
ACM Trans. Comput. Syst., 25(3):8, 2007.

[182] M. Jensen, S. Schäge, and J. Schwenk. “Towards an anonymous access control and accountability scheme
for cloud computing.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 540–541, 2010.

369Literature

[183] H. Jin, X.-H. Sun, Y. Chen, and T. Ke. “REMEM: REmote MEMory as checkpointing storage.” Proc IEEE
2nd Int. Conf. on Cloud Computing Technology and Science, pp. 319–326, 2010.

[184] E. Kalyvianaki, T. Charalambous, and S. Hand. “Self-adaptive and self-configured CPU resource provisioning
for virtualized servers using Kalman filters.” Proc. 6th Int. Conf. Autonomic Comp. (ICAC2009), pp. 117–126,
2009.

[185] E. Kalyvianaki, T. Charalambous, and S. Hand. “Applying Kalman filters to dynamic resource provisioning
of virtualized server applications.” Proc. 3rd Int. Workshop Feedback Control Implementation and Design
in Computing Systems and Networks (FeBid), p. 6, 2008.

[186] K. Kc and K. Anyanwu. “Scheduling Hadoop jobs to meet deadlines.” Proc IEEE 2nd Int. Conf. on Cloud
Computing Technology and Science, pp. 388–92, 2010.

[187] J. Kephart, H. Chan, R. Das, D. Levine, G. Tesauro, F. Rawson, and C. Lefurgy. “Coordinating multiple
autonomic managers to achieve specified power-performance tradeoffs.” Proc. 4th Int. Conf. Autonomic
Computing (ICAC2007), pp. 100–109, 2007.

[188] J. Kephart. “The utility of utility.” Proc. Policy 2011; 2011.
[189] W. O. Kermack and A. G. McKendrick. “ A contribution to the theory of epidemics.” Proc. Royal Soc.

London A, 115:700–721, 1927.
[190] A. Khajeh-Hosseini, D. Greenwood, and I. Sommeerville. “Cloud migration: A case study of migrating an

enterprise IT system to IaaS.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 450–457, 2010.
[191] W. Kim. Introduction to Object-Oriented Databases. MIT Press, 1990.
[192] J. Kim, W. J. Dally, and D. Abts. “Flattened butterfly: a cost-efficient topology for high-radix networks.”

Proc. Int. Symp. on Comp. Arch. (ISCA), pp. 126–137, 2007.
[193] J. Kim, W. J. Dally, and D. Abts. “Efficient topologies for large-scale cluster networks.” Proc. 2010 Optical

Fiber Comm. Conf. and National Fiber Optic Engineers Conf. (OFC/NFOEC), pp. 1–3, 2010.
[194] S. T. King, P. M. Chen, Y.-M Wang, C. Verbowski, H. J. Wang, and J. R. Lorch. “SubVirt: Implementing

malware with virtual machines.” Proc. IEEE Symp. on Security and Privacy, pp. 314–327, 2006.
[195] L. Kleinrock. Queuing Systems, Vol I and II. Wiley, 1965.
[196] F. Koeppe and J. Schneider. “Do you get what you pay for? Using proof-of-work functions to verify per-

formance assertions in the cloud.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science,
pp. 687–692, 2010.

[197] B. Koley, V. Vusirikala, C. Lam, and V. Gill. “100Gb Ethernet and beyond for warehouse scale computing.”
Proc. 15th OptoElectronics and Com. Conf. (OECC2010), pp. 106–107, 2010.

[198] A. N. Kolmogorov. “Three approaches to the quantitative definition of information.” Problemy Peredachy
Informatzii, 1:4–7, 1965.

[199] G. Koslovski, W.-L. Yeow, C. Westphal, T. T.Huu, J. Montagnat, and P. Vicat-Blanc. “Reliability support in
virtual infrastructures.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 49–58,
2010.

[200] P. R. Krugman. The Self-Organizing Economy. Blackwell Publishers, 1996.
[201] J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down Approach (Sixth Edition). Addison-Wesley,

2013.
[202] D. Kusic, J. O. Kephart, N. Kandasamy, and G. Jiang. “Power and performance management of virtual-

ized computing environments via lookahead control.” Proc. 5th Int. Conf. Autonomic Comp. (ICAC2008),
pp. 3–12, 2008.

[203] C. Labovitz et. al. “ATLAS Internet Observatory 2009 Annual Report.” http://www.nanog.org/meetings/
nanog47/presentations, 2009.

[204] C. F. Lam. “FTTH look ahead: Technologies and architectures.” Proc. 36th European Conf. on Optical
Communications (ECOC’10), pp. 1–18, 2010.

370 Literature

[205] L. Lamport and P. M. Melliar-Smith. “Synchronizing clocks in the presence of faults.” J. ACM, 32(1):52–78,
1985.

[206] L. Lamport. “The part-time parliament.” ACM Trans. on Computer Systems, 2:133–69, 1998.
[207] L. Lamport. “Paxos made simple.” ACM SIGACT News, 32(4):51–8, 2001.
[208] B. W. Lampson and H. E. Sturfis. “ Reflections on operating system design.” Comm. ACM, 19(5):

251–65, 1976.
[209] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J. Turner, and J. F. Farrell. “The inevitability

of failure: the flawed assumption of security in modern computing environments.” Proc. 21 National. Inf.
Sys. Security Conf., pp. 303–314, 1998.

[210] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis, McGraw-Hill, 1982.
[211] P. J. Leach, P. Levine, B. Douros, J. Hamilton, D. Nelson, and B. Stumpf. “The architecture of an integrated

local area network.” IEEE J. of Selected Areas in Comm. 1(5):842–857, 1983.
[212] D. S. Lee, K. I. Goh, B. Kahng, and D. Kim. “Evolution of scale-free random graphs: Potts model formula-

tion.” Nuclear Physics B, 696:351–380, 2004.
[213] E. Le Sueur and G. Heiser. “Dynamic voltage and frequency scaling: the laws of diminishing returns.” Proc.

Workshop on Power Aware Computing and Systems, HotPower’10, pp. 2–5, 2010.
[214] http://linux-vserver.org.
[215] Z. Li, N.-H. Yu, and Z. Hao. “A novel parallel traffic control mechanism for cloud computing.” Proc IEEE

2nd Int. Conf. on Cloud Computing Technology and Science, pp. 376–382, 2010.
[216] C. Li, A. Raghunathan, and N. K. Jha. “Secure virtual machine execution under an untrusted management

OS.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 172–179, 2010.
[217] H C. Lim, S. Babu, J. S. Chase, and S. S. Parekh. “Automated control in cloud computing: challenges

and opportunities.” Proc. First Workshop on Automated Control for Datacenters and Clouds, ACM Press,
pp. 13–18, 2009.

[218] X. Lin, Y. Lu, J. Deogun, and S. Goddard. “Real-time divisible load scheduling for cluster computing.” Proc.
13th IEEE Real-time and Embedded Technology and Applications Symp., pp. 303–314, 2007.

[219] C. Lin and D. C. Marinescu. “Stochastic high level Petri Nets and applications.” IEEE Trans. on Computers,
C-37, 7:815–825, 1988.

[220] S. Liu, G. Quan, and S. Ren. “On-line scheduling of real-time services for cloud computing.” Proc.
SERVICES’2010, pp. 459–464, 2010.

[221] N. Loutas, V. Peristeras, T. Bouras, E. Kamateri, D. Zeginis, and K. Tarabanis. “Towards a reference archi-
tecture for semantically interoperable clouds.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology
and Science, pp. 143–150, 2010.

[222] C. Lu, J. Stankovic, G. Tao, and S. Son. “Feedback control real-time scheduling: framework, modeling and
algorithms.” J. of Real-time Systems, 23(1-2):85-126, 2002.

[223] W. Lu, J. Jackson, J. Ekanayake, R. S. Barga, and N. Araujo. “Performing large science experiments on
Azure: Pitfalls and solutions.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science,
pp. 209–217, 2010.

[224] A. Luckow and S. Jha. “Abstractions for loosely-coupled and ensemble-based simulations on Azure.”
Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 550–6, 2010.

[225] J. Machta. “Complexity, parallel computation, and statistical physics,” Complexity, 11(5):46–64, 2006.
[226] W.-Y. Ma, B. Shen, and J. Brassil, “Content service networks: the architecture and protocols.” in Web Caching

and Content Delivery, pp. 83–101, Elsevier, 2001.
[227] J. Madhavan, A. Halevy, S. Cohen, X. Dong, S. R. Jeffery, D. Ko, and C. Yu. “Structured data

meets the Web: A few observations.” IEEE Data Engineering Bulletin, 29(3):19–26, 2006. Also,
http://research.google.com/pubs/pub32593.html.

371Literature

[228] D. J. Magenheimer and T. W. Christian. “vBlades: Optimized paravirtualization for the Itanium processor
family.” Proc 3rd VM Research and Technology Workshop, San Jose, CA, pp. 73–82, 2004.

[229] D. C. Marinescu, G. M. Marinescu, and Y. Ji. “The complexity of scheduling and coordination on computa-
tional grids.” In Process Coordination and Ubiquitous Computing, CRC Press, 2002.

[230] D. C. Marinescu. Internet-based Workflow Management. Wiley, 2002.
[231] D. C. Marinescu, C. Yu, and G. M. Marinescu. “Scale-free, self-organizing very large sensor networks.”

Journal of Parallel and Distributed Computing (JPDC), 50(5):612–622, 2010.
[232] von der Marlsburg, C. “Network Self-organization.“ In An Introduction to Neural and Electronic Networks.

S. Zonetzer, J. L. Davis, and C. Lau, Eds., pp. 421–432, Academic Press, San Diego, CA, 1995.
[233] P. Marshall, K. Keahey, and T. Freeman. “Elastic site: using clouds to elastically extend site resources.” Proc.

IEEE Int. Symp. on Cluster Computing and the Grid, pp. 43–52, 2010.
[234] M. Rodriguez-Martinez, J. Seguel, and M. Greer. “Open source cloud computing tools: A case study with a

weather application.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 443–449, 2010.
[235] F. Mattern. “Virtual time and global states of distributed systems.” Proc. Int. Workshop on Parallel &

Distributed Algorithms, Elsevier, New York, pp. 215–226, 1989.
[236] J. M. May. Parallel I/O for High Performance Computing. Morgan Kaufmann, Burlington, Mass, 2000.
[237] M. W. Mayer. “Architecting principles for system of systems.” Systems Engineering, 1(4):267–274, 1998.
[238] M. Mazzucco, D. Dyachuk, and R. Deters. “Maximizing cloud providers revenues via energy-aware allocation

policies.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 131–138, 2010.
[239] S. McCartney. ENIAC; The Triumphs and Tragedies of the World’s First Computer. Walker and Company

Publishing House, New York, 1999.
[240] P. McKenney. “On the efficient implementation of fair queuing.” Internetworking: Research and Experience,

2:113–131, 1991.
[241] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W. Zwaenepoel. “Diagnosing performance over-

heads in Xen virtual machine environments.” Proc. First ACM/USENIX Conf. on Virtual Execution Environ-
ments, 2005.

[242] A. Menon, A. L. Cox, and W. Zwaenepoel. “Optimizing network virtualization in Xen.” Proc. 2006
USENIX Annual Technical Conf., pp. 15–28, 2006. Also, http://www.usenix.org/event/usenix06/tech/menon/
menon_html/paper.html.

[243] N. Metropolis, A. W. Rosenbluth, A. Teller, and E. Teller. “Equation of state calculations by fast computing
machines.” J. of Chemical Physics, 21(6):1092–7, 1953.

[244] R. Milner. Lectures on a calculus for communicating systems. Lecture Notes in Computer Science, Vol. 197,
Springer Verlag, Heidelberg, 1984.

[245] M. Miranda. “When every atom counts.” IEEE Spectrum, July 2012, pp. 32–37, 2012.
[246] J. Mitola and G. Q. Maguire. “Cognitive radio: making software radios more personal.” IEEE Personal

Comm., 6:13-8, 1999.
[247] J. Mitola. “Cognitive radio: an integrated agent architecture for software-defined radio,” Ph.D. Thesis, KTH,

Stockholm 2000.
[248] T. Miyamoto, M. Hayashi, and K. Nishimura. “Sustainable network resource management system for virtual

private clouds.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 512–520, 2010.
[249] A. Mondal, S. K. Madria, and M. Kitsuregawa. “Abide: A bid-based economic incentive model for enticing

non-cooperative peers in mobile P2P networks,” Proc. Database Systems for Advanced Applications, DAS-
FAA, pp. 703–714, 2007.

[250] J. H. Morris, M. Satyanarayanan, M. H. Conner, M. H. Howard, D. S. Rosenthal, and F. D. Smith. “Andrew:
a distributed personal computing environment.” Comm. ACM, 29(3):184–201, 1986.

[251] R. J. T. Morris and B. J. Truskowski. “The evolution of storage systems.” IBM Systems Journal, 42(2):
205–217, 2003.

372 Literature

[252] J. Nagle. “On packet switches with infinite storage.” IEEE Trans. on Communications, 35(4):435–8, 1987.
[253] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. “Intel virtualization technology: hardware support

for efficient processor virtualization.” Intel Technology Journal, 10(3):167–177, 2006.
[254] Nelson, M. “Virtual memory for the Sprite operating system.” Technical Report UCB/CSD 86/301, Computer

Science Division (EECS), University of California, Berkeley, 1986.
[255] M. N. Nelson, B. B. Welch, and J. K. Osterhout. “Caching in Sprite network file systems.” ACM Trans. on

Computer Systems (TOCS), 6(1):134–54, 1988.
[256] M. E. J. Newman. “The structure of scientific collaboration networks.” Proc. Nat. Academy of Science,

98(2):404–409, 2001.
[257] A. J. Nicholson, S. Wolchok, and B. D. Noble. “Juggler: virtual networks for fun and profit.” IEEE Trans.

Mobile Computing, 9(1):31–43, 2010.
[258] H. Nissenbaum. “Can trust be secured online? A theoretical perspective.” Etica e Politica, vol. 2, 1999.
[259] NIST. “Cloud architecture reference models: A survey.” Document NIST CCRATWG 004, v2, pps. 32, 2011.

Also, http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing.
[260] NIST—Reference Architecture Analysis Team. “Cloud computing reference architecture: Straw man model

V2.” Document NIST CCRATWG 0028, pps. 8, 2011.
[261] NIST—ITLCCP. “NIST cloud computing reference architecture. (version 1)” NIST—Information Technology

Laboratory Cloud Computing Program, 2011.
[262] NIST. “Cloud specific terms and definitions.” NIST Cloud Computing Collaboration Site. http://

collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing/.
[263] NIST. “Basic security functional areas.” NIST Cloud Computing Collaboration Site. NIST Reference Archi-

tecture: Strawman Model, http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing.
[264] NIST. “Cloud security services architecture.” NIST Cloud Computing Collaboration Site. http://collaborate.

nist.gov/twiki-cloud-computing/pub/CloudComputing.
[265] NIST. “Threat sources by cloud architecture component.” NIST Cloud Computing Collaboration Site.

http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing.
[266] NIST. “General cloud environments: SWG.” NIST Cloud Computing Collaboration Site. http://collaborate.

nist.gov/twiki-cloud-computing/pub/CloudComputing.
[267] NIST. “Threat analysis of cloud services (initial thoughts for discussion).” NIST Cloud Computing Collab-

oration Site. http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing.
[268] NIST. “Top 10 cloud security concerns (Working list).” NIST Cloud Computing Collaboration Site.

http://collaborate.nist.gov/twiki-cloud-computing/pub/CloudComputing.
[269] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov. “The Euca-

lyptus open-source cloud-computing system.” Proc 9th IEEE/ACM Int Symp. on Cluster Computing and the
Grid, pp. 124–131, 2009.

[270] S. Oikawa and R. Rajkumar. “Portable RK: A portable resource kernel for guaranteed and enfoced timing
behavior.” In Proc. IEEE Real Time Technology and Applications Symp., pp. 111–120, June 1999.

[271] T. Okuda, E. Kawai, and S. Yamaguchi. “A mechanism of flexible memory exchange in cloud computing
environments.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 75–80, 2010.

[272] D. Olmedilla. “Security and privacy on the semantic web.” Security, Privacy and Trust in Modern Data
Management, M. Petkovic and W. Jonker, Eds., Springer Verlag, 2006.

[273] M. O’Neill. “SaaS, PaaS, and IaaS: a security checklist for cloud models.” http://www.csoonline.com/article/
660065/saas-paas-and-iaas-a-security-checklist-for-cloud-models.

[274] OpenVZ. http://wiki.openvz.org.
[275] A. M. Oprescu and T. Kielmann. “Bag-of-tasks scheduling under budget constraints.” Proc IEEE 2nd Int.

Conf. on Cloud Computing Technology and Science, pp. 351–359, 2010.
[276] Oracle Corporation. “Lustre file system.” http://en.wikipedia.org/wiki/Lustre_(file_system), 2010.

373Literature

[277] Oracle Corporation. “Oracle NoSQL Database.” http://www.oracle.com/technetwork/database/nosqldb/
learnmore/nosql-database-498041.pdf, 2011.

[278] OSA. “SP-011: Cloud computing pattern.” http://www.opensecurityarchitecture.org/cms/library/pattern-
landscape/251-pattern-cloud-computing.

[279] N. Oza, K. Karppinen, and R. Savola. “User experience and security in the cloud: An empirical study in
the Finnish Cloud Consortium.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science,
pp. 621–628, 2010.

[280] G. Pacifici, M. Spreitzer, A. N. Tantawi, and A. Youssef. “Performance management for cluster-based web
services.” J. Selected Areas in Comm. 23(12):2333–43, 2005.

[281] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G.Shin. “Performance evaluation of virtualization tech-
nologies for server consolidation.” HP Technical Report HPL-2007-59, 2007. Also, http://www.hpl.hp.com/
techreports/2007/HPL-2007-59R1.pdf.

[282] S. L. Pallickara, S. Pallickara, M. Zupanski, and S. Sullivan. “Efficient metadata generation to enable interac-
tive data discovery over large-scale scientific data collections.” Proc IEEE 2nd Int. Conf. on Cloud Computing
Technology and Science, pp. 573–580, 2010.

[283] Y. Pan, S. Maini, and E. Blevis. “Framing the issues of cloud computing and sustainability: A design
perspective.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 603–608, 2010.

[284] S. Parvin, S. Han, L. Gao, F. Hussain and E. Chang. “Towards trust establishment for spectrum selection
in cognitive radio networks.” Proc. IEEE Int. Conf. on Advanced Inf. Networking and Apps. pp. 579–583,
2010.

[285] AMK Pathan and R. Buya. “A taxonomy of content delivery networks.” http://cloudbus.org/reports/CDN-
Taxonomy.pdf, 2009.

[286] B. Pawlowski, C. Juszezak, P. Staubach, C. Smith, D. Label, and D. Hitz. “NFS Version 3 design and
implementation.” Proc. Summer Usenix, Tech. Conf., pp. 137–151, 1994.

[287] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler, D. Noveck, D. Robinson, and R. Turlow.
“The NFS Version 4 protocol.” Proc. 2nd Int. Syst. Admn. Networking (SANE) Conf., 2000.

[288] A. Paya and D. C. Marinescu “A cloud service for adaptive digital music streaming.” Proc. 8th Int. Conf. on
Signal Image Technology and Internet Systems, 2012.

[289] J. Pearn. https://plus.google.com/114250946512808775436/posts/VaQu9sNxJuY.
[290] S. Pearson and A. Benameur. “Privacy, securitry, and trust issues arising from cloud computing.” Proc. Cloud

Computing and Science, pp. 693–702, 2010.
[291] C. A. Petri. “Kommunikation mit Automaten.” Schriften des Institutes fur Instrumentelle Mathematik, Bonn,

1962.
[292] C. A. Petri. Concurrency theory. Lecture Notes in Computer Science, Vol. 254, pp. 4–24. Springer–Verlag,

Heidelberg, 1987.
[293] G. J. Popek and R. P. Golberg. “Formal requirements for virtualizable third generation architecture.” Comm.

of the ACM, 17(7):412–421, 1974.
[294] “A framework for hardware-software co-design of embedded systems.” Embedded.eecs.berkeley.edu/

Respep/Research/hsc, 2012.
[295] C. Preist and P. Shabajee. “Energy use in the media cloud.” Proc IEEE 2nd Int. Conf. on Cloud Computing

Technology and Science, pp. 581–586, 2010.
[296] D. Price and A. Tucker. “Solaris Zones: operating systems support for consolidating commercial workloads.”

Proc. Large Installation System Administration, USENIX, pp. 241–54, 2004.
[297] M. Price. “The paradox of security in virtual environments.” Computer, 41(11):22–28, 2008.
[298] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu. “Understanding performance interference of I/O

workload in virtualized cloud environments.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 51–58,
2010.

374 Literature

[299] P. Radzikowski. “SAN vs DAS: A cost analysis of storage in the enterprise.” http://capitalhead.com/articles/
san-vs-das-a-cost-analysis-of-storage-in-the-enterprise.aspx (updated 2010).

[300] A. Ranabahu and A. Sheth. “Semantics-centric solutions for application and data portability in cloud com-
puting.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 234–241, 2010.

[301] N. Regola and J.-C. Ducom. “Recommendations for virtualization technologies in high performance com-
puting.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 409–416, 2010.

[302] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt. “Google-wide profiling: A continuous profiling
infrastructure for data centers.” IEEE Micro, pp. 65–79, July/August 2010. http://static.googleusercontent.
com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/36575.pdf.

[303] D. M. Ritchie and K. Thompson. “The Unix time-sharing system.” Comm. of the ACM, 17(7):365-375, 1974.
[304] D. M. Ritchie. “The evolution of the Unix time-sharing system.” Bell Labs Technical Journal, 63(2.2):

1577–1593, 1984.
[305] L. M. Riungu, O. Taipale, and K. Smolander. “Research issues for software testing in the cloud.” Proc IEEE

2nd Int. Conf. on Cloud Computing Technology and Science, pp. 557–564, 2010.
[306] R. Rodrigues and P. Druschel. “Peer-to-peer systems.” CACM, 53(10):72–82, 2010.
[307] J. Rolia, L. Cerkasova, M. Arlit, and A. Andrzejak. “A capacity management service for resource pools.”

Proc. 2nd Symp. on Software and Performance, pp. 224–237, 2005.
[308] M. Rosenblum and T. Garfinkel. “Virtual machine monitors: Current technology and future trends.” Com-

puter, 38(5):39–47, 2005.
[309] D. M. Rousseau, S. B. Sitkin, R. S. Burt, and C. Camerer. “Not so different after all: a cross-disciplinary

view of trust.” Academy of Management Review, 23(3):393–404, 1998.
[310] T. L. Ruthkoski. “Exploratory project: State of the cloud, from University of Michigan and beyond.” Proc

IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 427–432, 2010.
[311] H. F. -W. Sadrozinski and J. Wu. Applications of Field-Programmable Gate Arrays in Scientific Research.

Taylor & Francis, 2010.
[312] J. H. Saltzer and M. F. Kaashoek. Principles of Computer System Design. Morgan Kaufamnn, NY, 2009.
[313] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman, M. Stroucken, W. Wang, L. Xy, and

G. R. Ganger. “Diagnosing performance changes by comparing request flows.” Proc. 8th USENIX Conf. on
Networked Systems Design and Implementation (NSDI’11), p. 14, 2011.

[314] B. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. “Design and implementation of the Sun
network file system.” Proc. Summer Usenix, Tech. Conf., pp. 119–130, 1986.

[315] T. Sandholm and K. Lai. “Dynamic proportional share scheduling in Hadoop.” Proc. JSSPP 10, 15th Work-
shop on Job Scheduling Strategies for Parallel Processing, 2010.

[316] M. Satyanarayanan. “A survey of distributed file systems.” CS Technical Report, CMU, http://www.cs.
cmu.edu/satya/docdir/satya89survey.pdf, 1989.

[317] F. Schmuck and R. Haskin. “GFPS: A shared-disk file system for large computing clusters.” Proc. Conf. on
File and Storage Technologies (FAST’02), pp. 231–244, 2002.

[318] I. Sholtes, J. Botev, A. Höhfeld, H. Schloss, and M. Esch. “Awareness-driven phase transitions in very
large scale distributed systems,” Proc. 2nd IEEE Int. Conf. on Self-Adaptive and Self-Organizing Systems,
SASO-08. IEEE Press, pp. 25–34, 2008.

[319] I. Scholtes. “Distributed creation and adaptation of random scale-free overlay networks.” Proc. 4th IEEE
Int. Conf. of Self-Adaptive and Self-Organizing Systems, SASO-10, pp. 51–63, 2010.

[320] P. Schuster. “Nonlinear dynamics from physics to biology. Self-organization: An 53 old paradigm revisited.”
Complexity, 12(4):9–11, 2007.

[321] S. Scott, D. Abts, J. Kim, and W. J. Dally. “The Blackwidow highradix Clos network.” Proc. Int. Symp. on
Computer Architecture (ISCA), pp. 16–28, 2006.

375Literature

[322] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee, and B. Chen. “Adapting software fault
isolation to contemporary CPU architectures.” Proc. 19th USENIX Conf. on Security (USENIX Security’10),
pp. 1–11, 2010.

[323] P. Sempolinski and D. Thain. “A comparison and critique of Eucalyptus, OpenNebula and Nimbus.” Proc
IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 417–426, 2010.

[324] S. Sivathanu, L. Liu, M. Yiduo, and X. Pu. “Storage management in virtualized cloud environment.” Proc.
IEEE 3rd Int. Conf. on Cloud Computing, pp. 204–211, 2010.

[325] J. E. Smith and R. Nair. “The architecture of virtual machines.” Computer, 38(5):32–8, 2005.
[326] L. Snyder. “Type architectures, shared memory, and the corolary of modest potential.” Ann. Rev. Comp. Sci.

1, pp. 289–317, 1986.
[327] SNIA, OGF. “Cloud storage for cloud computing.” Joint Paper of Storage Networking Industry

Association and Open Grid Forum, pp. 1–12, http://forge.gridforum.org/sf/docman/do/downloadDocument/
projects.occi-wg, 2009.

[328] R. J. Solomonoff. “A formal theory of inductive inference.” Inform. and Control (Part I), 7(1):1–22, 1964
and (Part II), 7(2):224–54, 1964.

[329] I. Sommerville, D. Cliff, R. Calinescu, J, Keen, T. Kelly, M. Kwiatowska, J. McDermid, and R. Paige.
“Large-scale IT complex systems.” Comm. ACM, 55(7):71–77, 2012.

[330] T. Stanley, T. Close, and M. S. Miller. “Causeway: A message-oriented distributed debugger.” Technical
Report HPL-2009-78, p. 14, 2009. Also, http://www.hpl.hp.com/techreports.

[331] M. Stecca and M. Maresca. “An architecture for a mashup container in vizualized environments.” Proc. IEEE
3rd Int. Conf. on Cloud Computing, pp. 386–393, 2010.

[332] P. Stingley. “Cloud architecture.” http://sites.google.com/site/cloudarchitecture/.
[333] M. Stokely, J. Winget, E. Keyes, C. Grimes, and B. Yolken. “Using a market economy to provision compute

resources across planet-wide clusters.” Proc. Int. Parallel and Distributed Processing Symp. (IPDPS 2009),
pp. 1–8, 2009.

[334] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord: A scalable peer-to-peer lookup
service for Internet applications.” Proc. SIGCOMM, pp. 149–160, 2001.

[335] M. Stonebreaker. “The “NoSQL” has nothing to do with SQL.” http://cacm.acm.org/blogs/blog-cacm/
50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext, 2009.

[336] StreamingMedia. “Only 18% using adaptive streaming, says Skyfire report.” http://www.streamingmedia.
com/Articles/ReadArticle.aspx?ArticleID=79393.

[337] J. Stribling, J. Li, I. G. Councill, M. F. Kaashoek, and R. Morris. “Overcite: A distributed, cooperative
citeseer.” Proc. 3rd Symp. on Networked Systems Design and Implementation, pp. 69–79, 2006.

[338] J. Sugerman, G. Venkitachalam, and B. Lim. “Virtualizing I/O devices on VMware Workstation’s hosted
virtual machine monitor.” Proc. USENIX Conf., pp. 70–85, 2001.

[339] C. Sun, W. Zhang, and K. B. Letaief. “Cluster-based cooperative spectrum sensing for cognitive radio
systems.” Proc. IEEE Int. Conf. on Comm. (ICC07), pp. 2511–5, 2007.

[340] C. Sun, W. Zhang, and K. B. Letaief. “Cooperative spectrum sensing for cognitive radios under BW con-
straints.” Proc. IEEE Intl. Wireless Commun. Networking Conf., pp. 1–5, 2007.

[341] Y. Sun, Z. Han, and K. J. Ray Liu. “Defense of trust management vulnerabilities in distributed networks.”
IEEE Comm. Magazine, Special Issue, Security in Mobile Ad Hoc and Sensor Networks, 46(2):112–119,
2008.

[342] Sun Microsystems. “Introduction to cloud computing architecture.” White Paper, June 2009. http://eresearch.
wiki.otago.ac.nz/images/7/75/Cloudcomputing.pdf.

[343] V. Sundaram, A. Chandra, P. Goyal, P. Shenoy, J. Sahni, and H. M. Vin. “Application performance in the
QLinux multimedia operating system.” In Proc. 8th ACM Conf. on Multimedia, pp. 127–136, 2000.

376 Literature

[344] M. Steinder, I. Walley, and D. Chess. “Server virtualization in autonomic management of heterogeneous
workloads.” SIGOPS Oper. Sys. Rev., 42(1):94–5, 2008.

[345] D. Tancock, S. Pearson, and A. Charlesworth. “A privacy impact assessment tool for cloud computing.” Proc
IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 667–674, 2010.

[346] L. Tang, J. Dong, Y. Zhao, and L.-J. Zhang. “Enterprise cloud service architecture.” Proc. IEEE 3rd Int.
Conf. on Cloud Computing, pp. 27–34, 2010.

[347] J. Tate, F. Lucchese, and R. Moore. Introduction to Storage Area Networks. IBM Redbooks, 2006.
http://www.redbooks.ibm.com/redbooks/pdfs/sg245470.pdf.

[348] D. Tennenhouse. “Layered multiplexing considered harmful.” In Protocols for High-Speed Networks,
H. Rudin and R. C. Williamson, Eds., pp. 143–8, North Holland, 1989.

[349] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. “ A hybrid reinforcement learning approach to autonomic
resource allocation.” Proc. Int Conf. on Autonomic Computing, ICAC-06, pp. 65–73, 2006.

[350] J. Timmermans, V. Ikonen, B. C. Stahl, and E. Bozdag. “The ethics of cloud computing. A conceptual
review.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 614–620, 2010.

[351] S. C. Tornay. “Ockham: studies and selections.” Open Court Publishers. La Salle, IL, 1938.
[352] Z. Toroczkai and K. E. Bassler. “Jamming is limited in scale-free systems.” Nature, 428:716, 2004.
[353] C. Tung, M. Steinder, M. Spreitzer, and G. Pacifici. “A scalable application placement controller for enterprise

data centers.” Proc. 16th Int. Conf. World Wide Web (WWW2007), 2007.
[354] A. M. Turing. “On computable numbers, with an application to the Entscheidungsproblem.” Proc. London

Math. Soc., Ser. 2, 42:230–265, 1937, and “On computable numbers, with an application to the Entschei-
dungsproblem: A correction,” Proc. London Math. Soc., Ser. 2, 43:544–546. 1937.

[355] A. M. Turing. “The chemical basis of morphogenesis.” Philosophical Trans of the Royal Society of London,
Series B, 237:37–72, 1952.

[356] J. van Vliet, F. Paganelli, S. van Wel, and D. Dowd. “Elastic Beanstalk: Simple Cloud Scaling for Java
Developers.” O’Reilly Publishers, Sebastopol, California, 2011.

[357] L. M. Vaquero, L. Rodero-Merino, and R. Buyya. “Dynamically scaling applications in the cloud.” Proc.
SIGCOMM Comput. Comm. Rev., 41:45–52, 2011.

[358] H. N. Van, F. D. Tran, and J.-M. Menaud. “Performance and power management for cloud infrastructures.”
Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 329–336, 2010.

[359] K. Varadhan, R. Govindan, and D. Estrin. “Persistent route oscillations in interdomain routing.” Computer
Networks, 32(1):1–16, 2000.

[360] J. Varia. “Cloud architectures.” http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf.
[361] P. Veríssimo and L. Rodrigues. “A posteriori agreement for fault-tolerant clock synchronization on broadcast

networks.” Proc. 22nd Annual Int. Symp. on Fault-Tolerant Computing, IEEE Press, Los Alamitos, CA,
pp. 527–536, 1992.

[362] J. von Neumann. “Probabilistic Logic and Synthesis of Reliable Organisms from Unreliable Components.”
In Automata studies, C. E. Shannon and J. McCarthy, Eds., Princeton University Press, Princeton, NJ, 1956.

[363] J. von Neumann. “Fourth University of Illinois Lecture.” Theory of Self-Reproduced Automata, A. W. Burks,
Ed., University of Illinois Press, Urbana, IL, 1966.

[364] S. V. Vrbsky, M. Lei, K. Smith, and J. Byrd. “Data replication and power consumption in data grids.” Proc
IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 288–295, 2010.

[365] B. Walker, G. Popek, E. English, C. Kline, G. Thiel. “The LOCUS distributed operating system.” Proc. 9th
ACM Symp. on OS principles, pp. 49–70, 1983.

[366] K. Walsh and E. G. Sirer. “Experience with an object reputation system for peer-to-peer filesharing.” Proc.
3rd symp. on networked systems design and implementation, pp. 1–14, 2006.

377Literature

[367] C. Ward, N. Aravamudan, K. Bhattacharya, K. Cheng, R. Filepp, R. Kearney, B. Peterson, L. Shwartz, and
C. C. Young. “Workload migration into clouds: challenges, experiences, opportunities.” Proc. IEEE 3rd Int.
Conf. on Cloud Computing, pp. 164–171, 2010.

[368] L. Wang, L. Park, R. Pang, V. S. Pai, and L. Peterson. “Reliability and security in the CoDeeN content
distribution network.” Proc. USENIX 2004, pp. 2004.

[369] M. Wang, N. Kandasamy, A. Guez, and M. Kam. “Adaptive performance control of computing systems via
distributed cooperative control: application to power management in computer clusters.” Proc. 3rd Intl. Conf.
on Autonomic Computing, pp. 165–174, 2006.

[370] D. J. Watts and S. H. Strogatz. “Collective-dynamics of small-world networks,” Nature, 393:440–442, 1998.
[371] J. Webster. “Evaluating IBM’s SVC and TPC for server virtualization.” IBM Evaluator Group, 2010.

ftp://ftp.boulder.ibm.com/software/at/tivoli/analyst_paper_ibm_svc_tpc.pdf.
[372] A. Whitaker, M. Shaw, and S. D. Gribble. “Denali; lightweight virtual machines for distributed and networked

applications.” Technical Report 02-0201, University of Washington, 2002.
[373] V. Winkler. Securing the cloud: cloud computer security techniques and tactics. Elsevier Science and Tech-

nologies Books, 2011.
[374] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker. “Scalable thread scheduling and global power manage-

ment for heterogeneous many-core architectures.” 9th Int. Conf. on Parallel Architectures and Compilation
Techniques (PACT’10), pp. 29–40, 2010.

[375] E. C. Withana and B. Plale. “Usage patterns to provision for scientific experimentation in clouds.” Proc IEEE
2nd Int. Conf. on Cloud Computing Technology and Science, pp. 226–233, 2010.

[376] M. Witkowski, P. Brenner, R. Jansen, D. B. Go, and E. Ward. “Enabling sustainable clouds via environmen-
tally opportunistic computing.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science,
pp. 587–592, 2010.

[377] D. H. Wolpert and W. Macready. “Using self-dissimilarity to quantify complexity,” Complexity, 12(3):77–85,
2007.

[378] Xen Wiki. http://wiki.xensource.com/xenwiki/CreditScheduler, 2007.
[379] Z. Xiao and D. Cao. “A policy-based framework for automated SLA negotiation for internet-based virtual

computing environment.” Proc. IEEE 16th Int. Conf. on Parallel and Distributed Systems, pp. 694–699,
2010.

[380] A. C. Yao “How to generate and exchange secrets.” Proc. Symp. on Theory of Computing (STOC),
pp. 162–167, 1986.

[381] S. Yi, D. Kondo, and A. Andrzejak. “Reducing costs of spot instances via checkpointing in the Amazon
Elastic Compute Cloud.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 236–243, 2010.

[382] M. Zapf and A. Heinzl. “Evaluation of process design patterns: an experimental study.” In W. M. P. van der
Aalst, J. Desel, and A. Oberweis, Eds., Business Process Management. Lecture Notes on Computer Science,
Vol. 1806, pp. 83–98, Springer-Verlag, Heidelberg, 2000.

[383] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. “Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling.” Proc. EuroSys 10 5th European Conf.
Computer Systems, pp. 265–278, 2010.

[384] P. Zech, M. Felderer, R. Breu. “Towards a model-based security testing approach in cloud computing envi-
ronments.” Proc. IEEE 6th Int. Conf. on Software Security and Reliability Companion, pp. 47–56, 2012.

[385] Z. L. Zhang, D. Towsley, and J. Kurose. “Statistical analysis of the generalized processor sharing scheduling
discipline.” IEEE J. Selected Areas in Comm. 13(6):1071–1080, 1995.

[386] X. Zhang, J. Liu, B. Li, and T-S.P Yum. “CoolStreaming/DONet: A data-driven overlay network for peer-
to-peer live media streaming.” Proc. INFOCOM ’05, pp. 2102–2111, 2005.

[387] C. Zhang and H. D. Sterck. “CloudBATCH: A batch job queuing system on clouds with Hadoop and HBase.”
Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 368–375, 2010.

378 Literature

[388] W. Zhao, P. M. Melliar-Smith, and L. E. Moser. “Fault tolerance middleware for cloud computing.” Proc.
IEEE 3rd Int. Conf. on Cloud Computing, pp. 67–74, 2010.

[389] X. Zhao, K. Borders, and A. Prakash. “Virtual machine security systems.” In Advances in Computer
Science and Engineering, pp. 339–365. http://www.eecs.umich.edu/aprakash/eecs588/handouts/virtual-
machinesecurity.pdf.

Glossary

Cloud security
Authentication credential Something that an entity is, has, or knows that allows that entity to prove
its identity to a system.

Cloud subscriber An authenticated person who accesses a cloud system over a network. A cloud
subscriber may possess administrative privileges, such as the ability to manage virtual machines or the
ability to regulate access by users to cloud resources the cloud subscriber controls.

FedRAMP FedRAMP allows joint authorizations and continuous security monitoring services for
government and commercial cloud computing systems intended for multiagency use. The use of this
common security risk model provides a consistent baseline for cloud-based technologies and ensures
that the benefits of cloud-based technologies are effectively integrated across a variety of cloud comput-
ing solutions. The risk model will enable the government to “approve once, and use often” by ensuring
that multiple agencies gain the benefit and insight of FedRAMP’s authorization and access to service
providers’ authorization packages.

FISMA-compliant environment An environment that meets the requirements of the Federal Infor-
mation Security Management Act of 2002. Specifically, the law requires an inventory of information
systems, the categorization of information and information systems according to risk level, security con-
trols, a risk assessment, a system security plan, certification and accreditation of the system’s controls,
and continuous monitoring.

Moderate impact Moderate impact refers to the impact levels defined in FIPS 199. A potential impact
is “moderate if the loss of confidentiality, integrity, and availability could be expected to have a serious
adverse effect on organizational operations, organizational assets, or individuals.”

Security accreditation The organization authorizes (i.e., accredits) the cloud system for processing
before operations and updates the authorization or when there is a significant change to the system.

Security assessment Assessing the management, operational, and technical controls of the cloud
system with frequency depending on risk, but no less than annually.

Security certification A security certification is conducted for accrediting the cloud system; the
security certification is a key factor in all security accreditation (i.e., authorization) decisions and is
integrated into and spans the system development life cycle.

Some of the definitions are based on dictionaries of terms from organizations such as NIST and the Cloud Computing Alliance.

379

380 Glossary

Cloud services
Cloud distribution The process of transporting cloud data between providers and the cloud.

Mobile/fixed endpoints A physical device that provides a man/machine interface to cloud services
and applications.

Service aggregation An aggregation brokerage service combines multiple services into one or more
new services.

Service arbitrage Similar to cloud service aggregation; the difference is that the services being aggre-
gated are not fixed. Arbitrage provides flexibility and opportunistic choices for the service aggregator
(e.g., provides multiple email services through one service provider or provides a credit-scoring service
that checks multiple scoring agencies and selects the best score).

Service deployment All of the activities and organization needed to make a cloud service available.

Service intermediation An intermediation broker provides a service that directly enhances a given
service delivered to one or more service consumers.

Service management All service-related functions necessary for the management and operations of
those services required by customers.

Service orchestration The arrangement, coordination, and management of cloud infrastructure to
provide a variety of cloud services to meet IT and business requirements.

Desirable characteristics/attributes
Data portability The ability to transfer data from one system to another without being required to
recreate or reenter data descriptions or to modify significantly the application being transported.

Interoperability The capability to communicate, execute programs, or transfer data among various
functional units under specified conditions.

Maintainability A measure of the ease with which maintenance of a functional unit can be performed
using prescribed procedures and resources. Synonymous with serviceability.

Privacy The assured, proper, and consistent collection, processing, communication, use, and dispo-
sition of personal information and personally identifiable information throughout its life cycle.

Rapid provisioning Automatically deploying a cloud system based on the requested service, resources,
and capabilities.

Reliability A measure of the ability of a functional unit to perform a required function under given
conditions for a given time interval.

Glossary 381

Resilience The ability to reduce the magnitude and/or duration of events disruptive to a critical infra-
structure. The effectiveness of a resilient infrastructure or enterprise depends on its ability to anticipate,
absorb, adapt to, and/or rapidly recover from a potentially disruptive event.

Service interoperability The capability to communicate, execute programs, or transfer data among
various cloud services under specified conditions.

System portability The ability of a service to run on more than one type or size of cloud.

Usability The extent to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified context of use.

General
Auditor A party that can conduct independent assessments of cloud services, information system
operations, performance, and security of the cloud implementations.

Audits Systematic evaluation of a cloud system by measuring how well it conforms to a set of estab-
lished criteria (e.g., security audit if the criteria is security, privacy-impact audit if the criteria is privacy,
performance audit if the criteria is performance).

Broker An entity that manages the use, performance, and delivery of cloud services and negotiates
relationships between cloud providers and cloud consumers.

Carrier The intermediary that provides connectivity and transport of cloud services between providers
and consumers.

Community cloud The infrastructure is shared by several organizations and supports a specific com-
munity that has shared concerns (e.g., mission, security requirements, policy, and compliance con-
siderations). It may be managed by the organizations or a third party and may exist on or off their
premises.

Data object A logical container of data that can be accessed over a network (e.g., a blob). May be an
archive, such as specified by the TAR format.

Hybrid cloud The infrastructure is a composition of two or more clouds (private, community, or
public) that remain unique entities but are bound together by standardized or proprietary technology
that enables data and application portability (e.g., cloud bursting for load balancing between clouds).

Infrastructure-as-a-Service (IaaS) The capability to provision processing, storage, networks, and
other fundamental computing resources where the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The consumer does not manage or control
the underlying cloud infrastructure but has control over operating systems, storage, and deployed
applications and, possibly, limited control of select networking components (e.g., host firewalls).

Physical data container A storage device suitable for transferring data between cloud subscribers
and clouds (e.g., a hard disk). There must be a standard format that the provider supports (e.g., EIDE,

382 Glossary

IDE, SCSI). The physical data container must be formatted with a standard logical organization, such
as FAT32, UFS, etc.

Platform-as-a-Service (PaaS) The capability to deploy onto the cloud infrastructure consumer-
created or acquired applications created using programming languages and tools supported by the
provider. The consumer does not manage or control the underlying cloud infrastructure, including
network, servers, operating systems, or storage, but has control over the deployed applications and,
possibly, application hosting environment configurations.

Private cloud The infrastructure is operated solely for an organization; it may be managed by the
organization or a third party and may exist on or off the organization’s premises.

Public cloud The infrastructure is made available to the general public or a large industry group and
is owned by an organization selling cloud services.

Service consumer Person or organization that maintains a business relationship with, and uses service
from, service providers.

Service-level agreement (SLA) A document explaining expected quality of service and legal guar-
antees.

Service provider Entity responsible for making a service available to service consumers.

SLA management Includes the SLA contract definition (basic schema with the quality-of-service
parameters), SLA monitoring, and SLA enforcement, according to the defined policies.

Software-as-a-Service (SaaS) The capability to use a provider’s applications running on a cloud infra-
structure. The applications are accessible from various client devices through a thin-client interface such
as a Web browser (e.g., Web-based email). The consumer does not manage or control the underlying
cloud infrastructure, including network, servers, operating systems, storage, or even individual applica-
tion capabilities, with the possible exception of limited user-specific application configuration settings.

Layers and functions
Application layer Deployed software applications targeted toward end-user software clients or other
programs, and made available via the cloud.

Hardware layer Includes computers (CPU, memory), network (router, firewall, switch, network
link and interface) and storage components (hard disk), and other physical computing infrastructure
elements.

Facility layer Heating, ventilation, air conditioning (HVAC), power, communications, and other
aspects of the physical plant comprise the lowest layer, the facility layer.

Metering Providing a measurement capability at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user accounts).

Glossary 383

Monitoring and reporting Discovering and monitoring the virtual resources, monitoring cloud oper-
ations and events, and generating performance reports.

Physical resource layer Includes all physical resources used to provide cloud services.

Platform architecture layer Entails compilers, libraries, utilities, and other software tools and devel-
opment environments needed to implement applications.

Provisioning/configuration Preparing a cloud to allow it to provide (new) services to its users.

Resource abstraction and control layer Software elements used to realize the infrastructure upon
which a cloud service can be established (e.g., hypervisor, virtual machines, virtual data storage).

Resource change Adjusting configuration/resource assignment for repairs and upgrades and joining
new nodes into the cloud.

Service layer Defines the basic services provided by cloud providers.

Virtualized infrastructure layer Software elements, such as hypervisors, virtual machines, virtual
data storage, and supporting middleware components, used to realize the infrastructure upon which a
computing platform can be established. Although virtual machine technology is commonly used at this
layer, other means of providing the necessary software abstractions are not precluded.

Virtualization
Full virtualization Each virtual machine runs on an exact copy of the actual hardware.

Guest operating system An operating system that runs on a VMM rather than directly on the hardware.

Hypervisor or virtual machine monitor (VMM) Software that securely partitions a computer’s
resources into one or more virtual machines. Each virtual machine appears to be running on bare
hardware, giving the appearance of multiple instances of the same computer, but all are supported on a
single machine.

Paravirtualization Each virtual machine runs on a slightly modified copy of the actual hardware. The
reasons for paravirtualization are (i) some aspects of the hardware cannot be virtualized; (ii) to improve
performance; (iii) to present a simpler interface.

Process or application virtual machine VM runs under the control of a normal OS and provides a
platform-independent host for a single application (e.g., Java Virtual Machine (JVM)).

System virtual machine/hardware virtual machine Provides a complete system. Each VM can run
its own OS, which in turn can run multiple applications. There are several approaches:

• Traditional VM. A thin software layer that runs directly on the host machine hardware; its main
advantage is performance. Examples: VMWare ESX, ESXi Servers, Xen, OS370, Denali.

• Hosted. Run on top of an existing OS; its main advantage is that it is easier to build and easier to
install. Example: User-mode Linux.

• Hybrid. Shares the hardware with an existing OS. Example: VMWare Workstation.

384 Glossary

Virtualization An abstraction or simulation of hardware resources (e.g., virtual memory).

Virtual machine (VM) An isolated environment that appears to be a whole computer but actually
only has access to a portion of the computer’s resources.

385

A
Absolute deadline, 195
Abstraction and physical reality, 303

cyberphysical systems, 304
embedded systems, 304
possible elements, 303
sociotechnical systems, 304

Abuse of the cloud, 275
Access control lists (ACLs), 147
Access transparency, 27
Account or service hijacking, 276
Adaptive audio streaming, 352
Adaptive data streaming, cloud service, 352
Address space compression, 142
Advisory lock, 260
Akamai, 226
All-or-nothing action, 46

post-commit phase, 45
pre-commit phase, 45

Amazon Elastic Block Storage (EBS), 318–319
Amazon Machine Image (AMI), 68
Amazon’s EC2, 324
Amazon Web Services (AWS), 67–68, 71, 317–318

Amazon Machine Image (AMI), 70–71
from Amazon Management Console, 319
AutoScaling, 71
Charges, 75
CloudFormation, 72
CloudWatch, 70–71
Elastic Beanstalk, 71–72
Elastic Block Store (EBS), 70
EC2 instance, 318
Evaluation, 75–77
RunInstance API, 318–319
Simple DB, 70
Simple Queue Service (SQS), 70
Virtual Private Cloud (VPC), 71
See also Simple Storage System (S3)

Amazon Web Services Licensing Agreement
(AWSLA), 72–73

charges, 75
evaluation, 75–77
regions and availability zones, 73

Amdahl’s law, 22
Andrew File System (AFS), 243, 251
AND split pattern, 108
Anticipated exceptions, 105
Apache Hadoop, 118, 258, 336
AppEngine, 78

Application binary interface (ABI), 132, 134–135
Application development

adaptive data streaming, 352
distributed trust algorithm, 339, 341

Cognitive Radio Networks (CRNs), 340
historical information, 347–348
simulation, 342
trust, 341, 344

EC2 instances, 318
Linux connections, 327
placement group and use MPI, 334
security rules, 324

firewalls connections, 319
Hadoop installation, 336
optimal FPGA synthesis, 356
simple notification service on Ubuntu 10.04, 332
S3 in java, 328
SQS services in C#, 331
See also Amazon Web Services (AWS)

Application/logic tier, 6
Application programming interface (API), 132
Application-specific integrated circuit (ASIC),

24–25, 356
Application program interface (API), 134–135
Ascending clock auction (ASCA), 178
Asymmetric choice petri nets, 55–56
Asymmetric confusion, 53
Atomic actions, 44

all-or-nothing property, 45
basic operations, 44
before-or-after property, 45–46
cell storage, 45–46
compare-and-swap architecture, 44–45
hardware support, 44–45, 47
journal storage, 46
monitors, 47
multistep operations, 44
parallel and distributed applications, 44
systematic approaches, 47

Auctioning algorithms, 181
Autonomic computing, 278
Autonomic performance managers coordination,

172–173
approach, 173
experiments, 174

Automatic VM scaling, 202
Autoscaling, 71, 163
Avast antivirus software, 323–324
Avast network shield, 323–324

Index

386 Index

Avast Web shield, 323–324
AWS security, 325
Azure and online services, 79

B
Bandwidth, 131
Barrier synchronization, 44
Basic Monitoring, 70–71
Before-or-after atomicity, 45–46
Berkeley Open Infrastructure for Network

Computing (BOINC), 129
Biased Random Walks, 234
BigTable, 266–267
Binary cause-effect relationship, 34
Binary code generation rules, 158
Binary translation, 140
Biology research, 125
Bipartite graph, 51
Bit-level parallelism, 25
BitTorrent, 8
Black Widow topology, 221
Border Gateway Routing (BGP) protocols, 207
Borrowed Virtual Time (BVT) algorithm, 146, 190

context switches, 190
real time, 191, 193

Bundling, 289
Byte-range tokens, 254

C
Cache Array Routing Protocol (CARP), 227
Cache isolation, 141–142
Cache Only Memory Access (COMA), 26
Capacity allocation, 164
Carver, 124
Case-based reasoning (CBR), 128
Causal delivery, 36
Cell storage, 45, 243–244
Centers for Disease Control (CDC), 4
Chord, 8
Chromebook, 78
Chubby replica architecture, 263
Chunks, 256
Class-based queuing (CBQ) method, 217
Client-server paradigm, 57

applications, 58
back-end systems, 57–58
communication on WWW, 60
data processing applications, 101
email service, 59
front-end systems, 57–58

heterogeneity, systems, 58
HTTP tunneling, 61–62
modularity concept, 57
process architecture, 58
proxy server, 61
remote procedure call (RPC), 58
response time, 61
security concerns, 58
system ensembles, 57–58
in WorldWideWeb, 60

Clock condition, 37
Clock proxy auction, 178
Closed-box platforms, 284
Cloud applications, 21

architectural styles, 79
workflows, 104, 106
See also Application development

Cloud-based optimal FPGA synthesis, 356
Cloud-based simulation, 339

CRN, 340
distributed algorithm for trust

management, 341
distributed trust algorithm simulation, 342
trust, 341

Cloud-based Web services, utility-based
model, 174–175

goals, 175
nine constraints, 178
optimization problem, 176–177
utility function, 176

Cloud computing, 1–2, 21, 77
at Amazon, 67, 73–74
architectural styles, 102
for biology research, 125
challenges, 100

node failures, 100
reliability, 100

client-server paradigm, 58
complex structure, 14
coordination, 112
delivery models and services, 1
digital contents, 128
economical aspects, 2–3, 9
ethical issues, 14
existing cloud applications, 101

batch processing systems, 101–102
processing pipelines, 101

grid movement, impact on, 4
high-performance computing, 121
major challenges, 16
obstacles, using, 10
parallel computing, 24–25
science and engineering applications, 120

387Index

social computing, 128
software licensing, 95
success factors, reasons, 10
types, 9
user experience, 93
utility-based computing costs, 131
vulnerabilities, 15

Cloud computing, delivery models and services, 1
architectures, 12
enterprise services, 13
entities, 11–12
model structures, 12–13
support activities, 14

Cloud computing environment, attacks, 276
Cloud computing paradigms, 318
Cloud controller, 82
Cloud Formation, 71–72
Cloud Front, 71
Cloud infrastructure

delivery models
Infrastructure-as-a-Service (IaaS), 13, 67
Platform-as-a-Service (PaaS), 13, 67
Software-as-a-Service (SaaS), 13, 67

IBMSmartCloud, 67
open-source cloud computing platforms, 67

Cloud interoperability
cloud service providers (CSPs), 87
defined, 86
exchange, 87
from network to clouds, 86–87
ontological development, 87
Public Key Infrastructure (PKI), 88
security concerns, 87–88
storage standards, 87
trust indexes, 88

Cloud resource management, 163
dynamic application scaling, 201
fair queing, 184
resource bundling, 178

ASCA algorithm, 180
combinatorial auctions, 178
pricing and allocation algorithms, 179

start-time fair queuing (SFQ) algorithm, 185
Cloud Resource Virtualization

approaches
full virtualization, 132
paravirtualization, 132

Cloud scheduling, 194
algorithms, 182
equal partitioning rule (EPR), 198–199
MapReduce applications, 199
optimal partitioning rule (OPR), 195
parameters used, 196

scheduling policies, 195
system model, 195
task characterization and deadlines, 195
timing diagram, 197

Cloud security
contract, user and CSP, 278
legislation, information practices, 280
operating system (OS), 283

risks, 292
privacy impact assesment (PIA) tool, 281
privacy, 279
risks, 274
shared images, risks of, 289
trust, 281
trusted virtual machine monitor (TVMM), 298
user concerns, 277
VM models, 284

VM-based threats, 286
VMM-based threats, 286

virtualization, 286
Xoar, design goals, 295

Cloud Security Alliance (CSA) report in 2010, 275
Cloud service provider (CSP), 277

responsibility sharing, 92
Cloud services availability, 275
Clouds for science and engineering, 120

eScience, 121
metadata, 121

Cloud storage diversity, 84
RACS system, 86
RAID-5 system, 84–85
risks, 84
scalable solutions, 86
vendor lock-up, 84

CloudStore, 258
Cloud vulnerabilities, 15
Cloud Watch, 70
Cluster controller, 82
Coffman conditions, 23

circular wait, 23
hold and wait, 23
mutual exclusion, 23
no preemption, 23

Cognitive radio networks (CRNs), 317, 340
primary nodes/devices, 340
secondary nodes/devices, 341

Commit point, 45
Common Object Request Broker Architecture

(CORBA), 103–104
Communication protocols and process

coordination, 21, 32
implementation, 33
precision of global time base, 33–34

388 Index

presence of errors, 32
RTT estimation, 33
timestamps, 33–34

Community Atmosphere Mode (CAM), 121
Community Climate System Model (CCSM), 122
Community cloud, 9
Complex instruction set computing (CISC), 25
Complex systems, 301

challenges and solutions, 314
communication systems, 312
complexity of simulation, 302
emergence and self-organization, 306
hierarchy, 310
homogeneous and heterogeneous systems, 303
interaction, 302
layering, 310
modularity, 310

Compliant Cloud Computing (C3), 92
Composability bounds and scalability, 308

computer clouds, 309
Google BigTable, implementation, 310
Internet, 309
limits of, 309
scaling, 310
threshold voltage, 309

Composite task, 105
Computing and communication systems,

complexity, 312
characteristics, 312
specific factors, 312–313

Computing grid, 4
application, challenges, 4
client-server paradigm, 58

Concurrency, 41
advantages, 42
challenges, 42
communication channels, 44
in embedded system, 42
software applications, 42–44
SPMD paradigm, 41–42
system design strategy, 42
thread activities, 42–43

Concurrency transparency, 27
Concurrent events, 34
Concurrent processes, 24
Content

centric routing, 5
defined, 5

Content delivery network (CDN), 79–80
design and policy decisions, 227
network resource management, 226

Control granularity, 171
Controllers

application controllers, 171
cloud controllers, 171

Control theory, 165
applications, 166
instability, 170
principles, 166
resource allocation, 169
single server system, 167
thresholds, 171

Confusion, 53
Congestion control, 33
Consensus protocols, 48

Algorithms, 49–50
in distributed system, 48
entities, role in, 49
family of Paxos, 48
no fault-tolerancy, 48
request types, 49
services, 48

Content-centric routing, 5
Context switching, 42–43
Copy-on-write mechanism, 297
Coral, 227
Course-grained locks, 260
CPU virtualization, 153
Create/Read/Update/Delete (CRUD)

operations, 104
Credence, 8

P2P applications, 8
Credentials, 282
Critical slowing, 305
Cross-site scripting, 274
Current privilege level (CPL), 152
Cygwin, 336

D
Dashboard, 83
Data base management system (DBMS), 245
Datagram, 205
Data centers

energy consumption, 9
Data intensity, 90–91
Data loss or leakage, 276
Data mining, 101
Data parallelism/loop parallelism, 24–25
Data processing applications, 101

batch processing systems, 101–102
types, 101

Data replication, 265
Data storage, 100
Data streaming, 352
Data tier, 6

389Index

Deep Web sources, 78
Defense Information Systems Agency (DISA), 4
Degree of a Power-Law Network Estimation, 236
Degree of the vertex, 229
Denial-of-service (DOS) attacks, 320
Detailed Monitoring, 70–71
Distributed Data Interface (DDI), 122
Distributed denial-of-service attack (DDoS), 93, 274
Distributed file systems, 246

Andrew file system (AFS), 251
Network file system (NFS), 246
Sprite network file system (SFS), 251

Distributed systems, 27
characteristics, 27
defined, 27
history, 27
middleware, 27

Divisible Load Theory (DLT), 115
Document processing, 101
Domain Name Service (DNS), 87, 207, 324
Dom0, 147, 292
Download hadoop, 337
Dynamic binary translation, 135
Dynamic Host Configuration Protocol (DHCP), 81
Dynamic provisioning, 280
Dynamic random access memory (DRAM),

88–89, 242
Dynamic Voltage and Frequency Scaling

(DVFS), 164
Dynamic voltage scaling (DVS), 172
Dynamic workflows, 110
DynamoDB, 71

E
Earliest deadline first (EDF), 183
EC2 c1.medium Platform

average conversion time, 355
conversion Time in Seconds, 354

EC2 Linux instance, launch, 327
Eclipse, 336
EC2 Placement Group creation and use MPI, 334
EC2 Request Instance Wizard, 326
EC2 t1.micro Server Platform

average conversion time, 355
conversion Time in Seconds, 353–354

Elastic Block Store (EBS), 70
ElastiCache, 71
Elastic Beanstalk, 71
Elastic Compute Cloud (EC2), 68

SOAP messages, 68
VM import, 68
Xen virtualization strategy, 68

Elastic computing, 1
Elastic Load Balancer, 71
Elastic Map Reduce (EMR), 71
Embedded systems, 42
Emergence and self-organization, 306
Enabled Transition, 54
Enactment engine, 106–107
Energy optimization, 164
Energy-proportional systems, 88
Enforced modularity, 57
Epidemic algorithms, 236

infective, 237
recovered, 237
susceptible-infective (SI), 237

ETag, 70
Eucalyptus, 67, 80–81
European Organization for Nuclear Research

(CERN), 3
Exception Handler (EH), 42
Explicit AND split, 108
Extended free choice, 55–56
Extended nets, 55
Extensibility, 103
Extensible Markup Language (XML), 104

F
Fabric controller, 79–80
Facebook JavaScript (FBJS), 129
Facebook markup language (FBML), 129
Failure transparency, 27
Fair queuing, 184

bandwidth, 184
bit-by-bit round-robin (BR) strategy, 184
buffer space, 184
fair queuing (FQ) algorithm, 184
packet transmission, 185
timing, 184

Fast Fourier Transform (FFT)
algorithm, 122

Fat tree, 221
Feasible state, 169
Federal Emergency Management Agency

(FEMA), 201
Federal Information Processing Standard

(FIPS), 275
Federal Information Security Management Act

(FISMA), 275
FPGA structure, 357
FibreChannel over IP (FCIP), 225
Field programmable gate arrays (FPGAs), 24–25
FIFO delivery, 36
Fine control, 171

390 Index

Fine-grained locks, 260
Firepass, 291
Firewall Rule Setting, 322
Firewalls, 319
Firing rule, 55
Firing sequence, 55
Floating point systems (FPS), 26
Flow control, 33
Folded Clos topology, 221
Fork routing task, 105
Fortran 90 code, 122
FORWARD rule, 321
Free Choice, 55–56
Full virtualization and paravirtualization, 140

G
General Atomic andMolecular Electronic Structure

System (GAMESS), 122
General Parallel File System (GPFS), 252–253
Giant connected component (GCC), 230
Global predicate evaluation (GPE), 32
Globule, 227
Gmail, 77
Google

cloud computing, 77–78
crawlers, 78
data base management services (DBMSs), 79
deep Web sources, 78
structured data, 78

Google Analytics, 268
Google base, 78
Google calendar, 77–78
Google co-op, 78
Google docs, 77
Google drive, 78
Google File System (GFS), 243, 255, 257
Google Query Language (GQL), 78
GrepTheWeb application, 118–119

the cleanup phase, 120
the monitoring phase, 120
the processing phase, 118
the shutdown phase, 120
the startup phase, 118
user interactions with system, 120

Guest system calls, 143
Gustafson’s law, 23

H
Hadoop file system (HDFS), 258–259
Hadoop installation on Eclipse on windows

system, 336

Hadoop Map Reduce, 118
Hard deadlines, 195
Hardware costs, 133
Hardware description language (HDL), 24–25
Hardware trojan horses (HTH), 314
Hardware virtual machine (HVM), 334
Health and Human Services (HHS), 4
Hierarchical token buckets (HTB), 218–219
High-level language (HLL) code, 135
High-performance computing challenge

(HPCC), 123
High-performance computing on cloud, 121
Holy grail, 22. See also Parallel and Distributed

Systems parallel computing
Horizontal scaling, 201
Hourglass network architecture, 208
HTB packet schedule, 219
Hybrid cloud, 9
Hypercube, 26
Hypertext Caching Protocol (HTCP), 227
HyperText Markup Language (HTML), 3

See also Network-centric computing and
network-centric content

HyperText Transfer Protocol (HTTP), 3, 60

I
IaaS model

challenges, cloud computing, 17
IBM Sequoia-BlueGene/Q system, 26. See also

Supercomputers
iCloud (Apple), 2
Identity and Access Management (IAM), 324
Image processing, 101
Implicit AND split, 108
Incidence matrix, 55
Incommensurate scaling, 307
Inconsistent and consistent cuts, 38–39
Indexing, 101
InfiniBand, 89–90, 220
Input/output memory management unit

(IOMMU), 294
INPUT rule, 321
InputStream, 329
Instance Action pull-down menu, 321
Instruction-level parallelism, 25
Instruction set architecture (ISA), 132, 134–135
Integral control, 171
Intercloud exchange, 87
Interconnection networks for computer clouds, 219
The Internet, 207
Internet Cache Protocol (ICP), 227
Internet exchange point (IXP), 211

391Index

Internet migration to IPv6, 210
Internet Protocol television (IPTV), 207
Internet transformation, 211
Interpreter, 303
Interrupt virtualization, 143
Iptables command, 321
IPv4 and IPv6, differences, 210

mandatory support for network security, 210
multicasting, 210
stateless address autoconfiguration

(SLAAC), 210
Itanium, 152

J
Jaguar, 26. See also Supercomputers
Java SecurityManager, 284
Java Virtual Machine (JVM), 284
Join routing task, 105
Journal storage, 45–46, 243

K
Key-based routing (KBR), 8–9
Key Management Interoperability Protocol

(KMIP), 88

L
Lagrange multiplier, 167
Large Hadron Collider (LHC), 4
Large-scale data centers

data migration, 90
energy cost, 90
energy proportional system, 88–89
energy reduction, 90
idle system, power consumption, 88
operating efficiency, 88

Latency, 131
Lawrencium, 124
Layering and hierarchy, 311

application layer, 311
communication protocols, 311
data link layer, 311
functional components, 311
network layer, 311
physical layer, 311
transport layer, 311

Layering and virtualization, 133
LHC Computing Grid (LCG), 4
Live media, 226
Liveness, 55

Load balancing, 164
Load imbalance, 126
Location transparency, 27
Lock granularity, 254
Locks and Chubby, 260–261
Logical clocks (LC), 34

concept, 34
processes, 35
rules, 34

Loopback files, 289

M
Machine learning techniques, 166
MAESTRO, 123
Mandatory locks, 260
Mandatory security, 283
Man-in-the middle attacks, 290
MapReduce applications subject to deadlines

scheduling, 199
open-source implementation, 199
parameters used, 200

Map Reduce programming model, 115, 117
Marked Graph, 55–56
Market-oriented/economic mechanisms, 166
Mashup Container, 129
Master/slave replication, 265
Mean time to failure (MTTF), 312
Media Access Control (MAC), 311
Megastore, 243, 268–269
Memcached system, 264
Memory management unit (MMU), 141
Memory virtualization, 136, 153
Message delivery rules, 35

causal delivery violation, 37–38
channel-process interface, 36
clock conditions, 37
consistent message delivery, 37
First in, first out (FIFO) delivery, 36
Time stamp (T S(m)), 37

Message Passing Interface (MPI), 24, 44
Metaphysical addressing, 153
Microsoft Windows

Azure services, 79
cloud computing, 79
online services, 79

Middleware, 4, 27
Migration transparency, 27
MIMD architecture

defined, 26
in parallel computing, 26

MIMD Lattice Computation (MILC), 123
Modeling concurrency with Petri nets, 51

392 Index

Modified Transition Enabling Rule for Extended
Nets, 55

Modularity, 57, 310
Monitors, 47–48
Multicore processors, 24
Multilevel Memory Manager (MLMM), 42
Multiple instructions, Multiple Data (MIMD), 25
Multi-version concurrency control (MVCC), 268

N
National Aeronautics and Space Administration

(NASA), 4
National Center for Biotechnology Information

(NCBI), 125
National Energy Research Scientific Computing

Center
(NERSC), 121
National Institute of Standards (NIST), 275
Navy’s Next Generation Enterprise Network

(NGEN), 4
Network address translation (NAT) mechanism,

75, 320
Network architecture, 205
Network-centric computing and network-centric

content, 3
advantages, 5
characteristics, 5
defined, 4
development factors, 6
distribution developments, 3

Network Element Control Protocol (NECP), 227
Network File System (NFS), 243, 245
Network interface card (NIC), 149
Network address translation (NAT) mechanism, 320
Network News Transfer Protocol (NNTP), 7
Network resource management, 217

content delivery network (CDN), 226
epidemic algorithms, 236
interconnection, 219
Internet, 207

migration to IPv6, 210
TCP (transport control protocol), 208–209
transformation, 211
web access, 214

overlay network, 207
packet-switched networks, 205
scale-free networks, 230

biased randomwalks, 234, 236
power-law degree distribution, 232

small-world networks, 229
storage area network (SAN), 222

Network virtualization, optimization of, 149
Neutrality, 103
New Technology File System (NTFS), 80
NFS client/server interaction, 249
Nimbus, 67, 80–81, 83
NIST project, 286
NMap tool, 290
Node controller, 82
Nonces, 288
Non scalable/single-load balancers, 202
Nonfaulting access to privileged state, 142–143
Non-Uniform Memory Access (NUMA), 26

O
Object Request Broker (ORB), 103
Open-box platforms, 284
OpenNebula, 67, 80–83
Open-source software platforms, 80

infrastructure, 80
private clouds, 80

OpenStack, 67, 83
OpenVZ system, 155
Operating system-level virtualization, 138–139
Operating systems, 284
Operating system security, 283
Oracle Cloud, 67
Ordinary Net, 54
Overcite, 8
Overlay networks, 228

P
Packet filtering, 319
Packet-switched networks, 205
Parallel and Distributed Systems

checkpoint-restart procedures, 21
cloud applications, 21
communication protocols, 21

binary cause-effect relationship, 34
clock rate, 33
error control mechanism, 33
event sequences, 34
major concerns, 32
process coordination, 32
timing concept, 33–34

global state, 28
of channels, 29
communication channel, 29
of distributed computation, 29
initial state, 30
lattice of, 29–30

393Index

number of paths, 30–31
problems, 32
process group, 29
protocol, 29
space-time, 28
in two-dimensional case, 31

parallel computer architecture, 25
graphic processing units (GPUs), 26
MIMD architecture, 26
Sun Microsystems, 26
vector processing, 26

parallel computing, 21
advantages, 21–22
algorithms requirements, 24
barrier synchronization, 23
Coffman conditions, 23
companies aimed to support, 25
concurrency problems, 23–24
deadlocks, 23
fine-grain and coarse-grain, 24
livelock condition, 23
scaled speed-up, 41
shared memory, 24
speed-up measures, 22
subtasks, 23

Parallel file systems (PFSs), 245
Paravirtual machine (PVM) image, 334
Paravirtualization, 141
Partial differential equations (PDEs), 24
Passphrase, 291
Paxos consensus algorithm flow, 48, 50
Peer-to-peer systems, 7

overlay network, 8–9
properties, 7

Performance isolation, 139
Performance penalty, 133
Performance transparency, 27
Periodic auctions, 181
Petri nets

bipartite graphs, 51
concurrent activities, 52
confusion, 53
defined, 54
in distributed system, 51–52
exclusion model, 54
marked graph, 53
model priorities, 53
system with two processes, 53
tokens in, 51

Phishing, 274
Platform-as-a-Service (PaaS)

Google, using, 78
Point-of-presence (POP), 211

Power-law distribution, 231
Power manager, 173
Presentation tier, 6
Primitive task, 105
Priority inversion, 23
Privacy and privacy impact assessment, 279
Privacy concerns, 280
Privacy impact assesment (PIA), 281
Private cloud, 9

Eucalyptus in, 81
Open-source software, 80
space support, 82
system components, 81
virtual machine construction, 82

Privilege leaking, 152
Processor Abstraction Layer (PAL), 152–153
Processor emulation, 139
Processor virtualization, 139
Proportional thresholding, 171
Proposal preparation, 49
Proposal promise, 49
Protocol stacks, 206
Public cloud, 9
Public Key Infrastructure (PKI), 88

Q
Qemu, 147
Quad-core processors, 6
Quantifying complexity, 304

complexity measurement, 305
excess entropy, 305
Kolmogorov complexity, 306
macroscopic and microscopic properties, 304
phase transition, 308
relative predictive efficiency, 305
scale-free organization, 308
statistical complexity, 305
von Neumann entropy, 305

Quantum Chromo Dynamics (QCD), 123
Quorum, 49

R
RAID-5 system, 84–85
Rate-based earliest deadline (RBED), 183
Rate monotonic algorithms (RMA), 183
RDF Schema (RDFS), 3
Reduced Instruction Set Computing (RISC), 25
Redundant Array of Cloud Storage (RACS), 86
Register-transfer level (RTL), 356
Relational database management system

(RDBMS), 6

394 Index

Relative deadline, 195
Remote File System (RFS), 246
Remote procedure call (RPC), 27, 58, 248
Replanning, 105
Replication transparency, 27
Representational State Transfer (REST), 104
Prerequisites, 336
Resource allocation/dispatching (RAD), 183
Resource bundling, 178

the ASCA combinatorial auction algorithm, 180
combinatorial auctions, 178
pricing and allocation algorithms, 179

Resource Description Framework (RDF), 3
Resource management and dynamic application

scaling, 201
Resource management, policies and

mechanisms, 164
classification, 164
implementation, 165
interactive vs noninteractive workloads, 166

Response time, 61
Retransmission timeout (RTO), 209
Ring aliasing, 142
Ring compression, 143
Ring deprivileging, 142
Round-trip-time (RTT), 33, 209
Routers, 220
Routing task, 105
Runs and cuts; causal history, 38, 40

defined, 38–39
monitors, 38
process evaluation, 38
snapshot protocol, 40–41

S
SaaS model

challenges, cloud computing, 16
Same program multiple data (SPMD), 24–25,

122, 334
Scale-free networks, 229–230
Scaling transparency, 27
Scheduler (S), 42
Scheduling algorithms for computing clouds, 182

best-effort policies, 183
max-min fairness criterion, 182
multimedia applications, 183
non preemptive, 182
preemptive, 182
time-slice, 183

Security isolation, 100
Security risks posed by management OS, 292

Security risks posed by shared images, 289
Linux AMI, 290
privacy risks, 291
software vulnerability, 290
types, 290
unsolicited connections, 291

Security rules in EC2, 324
Self-Organization and Complexity Attributes, 307
Semaphores, 47–48
Service- and compliance-level agreements, 91
Service-level agreement (SLA)

autonomic performance managers, 172
area of service, 91
common metrics, 92
compliance concept, 92
management phases, 92
objectives, 91
recording, 91

Several Network File Systems, comparison, 246
Shared technology, 275
SIMD. See Single Instruction, Multiple Data

(SIMD)
Simple Mail Transfer Protocol (SMTP), 7
Simple Notification Service installation on Ubuntu

10.04, 332
Simple Object Access Protocol (SOAP), 104
Simple Queue Service (SQS), 70
Simple Storage System (S3)

Amazon S3 SLA, 70
cloud storage diversity, 86
Elastic Block Store (EBS), 70
ETag field, 70
functions, 68
object maintenance, 68–69
parallel applications, 69
supporting activities, 69

Simple Workflow Service (SWF), 71
Simultaneous clock auction, 178
Single Instruction, Multiple Data (SIMD), 25

graphic processing units (GPUs), 26
vector processing, 25–26

Single Instruction Single Data (SISD), 25
S/KEY password system, 288
Skype, 7–8
Small-World Networks, 229
SmartLM, 96
Snapshot protocol of Chandy and Lamport, 40–41
Social intelligence, 128
Social networks, 128
Societal scaling, 310
Soft deadlines, 195
Soft modularity, 57

challenges, 57

395Index

module implementation, 57
“Soft-state” approach, 265
Software engineering

tier models, impact on, 6
Software fault isolation (SFI),158
Software licensing, 95
Sprite Network File System

(SFS), 251
SQL Azure, 79
SQL injection, 274
SQS services management in C#, 331
SSH Installation, 336
Start-time fair queuing, 185

scheduler, 186
scheduling decisions, 187
SFQ tree, 186

Stateless server, 102
State Machine, 55–56
S3 use in java, 328
Stochastic high-level Petri nets

(SHLPNs), 57
Stochastic Petri nets (SPNs), 56
Storage area network (SAN), 222, 224–245
Storage controller, 82
Storage models, 46, 243
Storage service (Walrus), 82
Storage system, 241

Bigtable, 266–267
databases, 243

Apache Hadoop, 258
evolution, 242
general parallel file system, 252
Google File System (GFS), 255
history, 269
locks and chubby, 260
Megastore, 268–269
model, 243
online transaction processing

(OLTP), 264
Strong clock condition, 37
Strong coordination models, 110
Sudo command, 321
Supercomputers, 26
Symmetric confusion, 53
Synchronization pattern, 108
System analysis phase, 34
System heterogeneity, 58
Systems of systems (SoS), 314

attributes, 314
collaborative systems, 314
direct system, 314
virtual systems, 314

System specification phase, 34

T
Task parallelism, 25
TCP congestion control policies, 209
Terra. See Trusted virtual machine monitor

(TVMM)
Third-party control, 275
Three-tier model, 6
Three-way handshake, 61
Thresholds, 171
Tier 1 network, 211
Tier 2 network, 211
Tier 3 network, 211
Timestamps, 33–34
Titan (Cray XK7 system), 26. See also

Supercomputers
Toolstack, 147
Trace distance, 236
Traditional threats, 274
Transaction processing and NoSQL databases, 264
Transaction processing systems, 21
Translation look-aside buffer (TLB), 145
Transport Control Protocol (TCP), 60, 207
Trivial File Transfer Protocol (TFTP), 207
Trojan, 291
Trust, 281

calculus-based trust, 282
deterrence-based trust, 282
dynamic trust, 282
interdependence, 281
persistent trust, 282
policies and reputation, 282
relational trust, 282
risk, 281

Trusted applications, 283
Trusted computer base (TCB), 17, 292
Trusted-path mechanism, 284
Trusted virtual machine monitor (TVMM), 298
Trust management service, 344

advantages, 350
An Algorithm for Trust Evaluation, 347
average trust function, 351
benefits, 350
CR layout, 346
History-Based Algorithm simulation, 348
mobile devices, 344
model assumptions, 345

Tunneling, 225

U
Ubuntu, 332
Uniform Memory Access (UMA), 26

396 Index

Universal Declaration of Human Rights,
Article 12, 279

Universal Serial Bus (USB), 149
Unix File System, 248, 250
Unpack hadoop, 338
User and cloud service provider, 92
User and CSP, contrast, 278
User convenience, 133
User Datagram Protocol (UDP), 207
User experience, 93
Utility-based approaches, 166

V
vBlades, 152
Vertical scaling, 201
Vice, 251
Video transcoding, 101
Virtual firewall-router (VFR), 147
Virtualization, 42, 132

aggregation, 132
emulation, 132
hardware support, 142
layering, 133
limitations, 156
multiplexing and emulation, 132
performance and security isolation, 139
side effects, 133
security of, 286

implications, 286
undesirable effects, 287

Virtual machine (VM), 136
cloud computing, 17
monitors, 136
performance comparison, 154

Virtual machine-based rootkit (VMBR), 157
Virtual machines comparisons, 154
Virtual machine security, 284–285
Virtual machines monitors (VMMs), 80, 136
Virtual Memory Manager (VMM), 42
Virtual network interfaces (VIFs), 147
Virtual Private Cloud (VPC), 71
Virtual private network (VPN), 71

VM-based threats, 286
VM import, 352
VMM-based threats, 286
VMware EX Server, 141
VMX nonroot, 143
VMX root, 143
Voice-over-Internet Protocol (VoIP), 7–8, 207

W
Warehouse-scale computer (WSC), 219
Weak coordination models, 110
Web access and TCP congestion control

window, 214
Web browser, 60
Web Cache Coordination Protocol (WCCP), 227
Web Ontology Language (OWL), 3
Web page, 60
Web Services Description Language (WSDL), 104
WebSphere Extended Deployment (WXD), 174
Web statistics, 214
Windows Azure, 79

compute, 79–80
fabric controller, 79–80
storage, 79–80

Workflow definition language (WFDL), 105
Workflow pattern, 107–108
Workflow verification, 106
Write transaction, 269
WS-Agreement Negotiation protocol, 96

X
Xen, 144–145
Xen 2.0, 149
XenStore, 147, 295
Xoar, 295

Z
ZooKeeper, 112, 114

application programming interface (API), 115
service guarantees, 114

 ~StormRG~

	Front Cover
	Half Title
	Title Page
	Copyright
	Dedication
	Contents
	Preface
	Foreword
	1 Introduction
	1.1 Network-Centric Computing and Network-Centric Content
	1.2 Peer-to-Peer Systems
	1.3 Cloud Computing: An Old Idea Whose Time Has Come
	1.4 Cloud Computing Delivery Models and Services
	1.5 Ethical Issues in Cloud Computing
	1.6 Cloud Vulnerabilities
	1.7 Major Challenges Faced by Cloud Computing
	1.8 Further Reading
	1.9 History Notes
	1.10 Exercises and Problems

	2 Parallel and Distributed Systems
	2.1 Parallel Computing
	2.2 Parallel Computer Architecture
	2.3 Distributed Systems
	2.4 Global State of a Process Group
	2.5 Communication Protocols and Process Coordination
	2.6 Logical Clocks
	2.7 Message Delivery Rules; Causal Delivery
	2.8 Runs and Cuts; Causal History
	2.9 Concurrency
	2.10 Atomic Actions
	2.11 Consensus Protocols
	2.12 Modeling Concurrency with Petri Nets
	2.13 Enforced Modularity: The Client-Server Paradigm
	2.14 Further Reading
	2.15 History Notes
	2.16 Exercises and Problems

	3 Cloud Infrastructure
	3.1 Cloud Computing at Amazon
	3.2 Cloud Computing: The Google Perspective
	3.3 Microsoft Windows Azure and Online Services
	3.4 Open-Source Software Platforms for Private Clouds
	3.5 Cloud Storage Diversity and Vendor Lock-in
	3.6 Cloud Computing Interoperability: The Intercloud
	3.7 Energy Use and Ecological Impact of Large-Scale Data Centers
	3.8 Service- and Compliance-Level Agreements
	3.9 Responsibility Sharing Between User and Cloud Service Provider
	3.10 User Experience
	3.11 Software Licensing
	3.12 Further Reading
	3.13 History Notes
	3.14 Exercises and Problems

	4 Cloud Computing: Applications and Paradigms
	4.1 Challenges for Cloud Computing
	4.2 Existing Cloud Applications and New Application Opportunities
	4.3 Architectural Styles for Cloud Applications
	4.4 Workflows: Coordination of Multiple Activities
	4.5 Coordination Based on a State Machine Model: The ZooKeeper
	4.6 The MapReduce Programming Model
	4.7 A Case Study: The GrepTheWeb Application
	4.8 Clouds for Science and Engineering
	4.9 High-Performance Computing on a Cloud
	4.10 Cloud Computing for Biology Research
	4.11 Social Computing, Digital Content, and Cloud Computing
	4.12 Further Reading
	4.13 Exercises and Problems

	5 Cloud Resource Virtualization
	5.1 Virtualization
	5.2 Layering and Virtualization
	5.3 Virtual Machine Monitors
	5.4 Virtual Machines
	5.5 Performance and Security Isolation
	5.6 Full Virtualization and Paravirtualization
	5.7 Hardware Support for Virtualization
	5.8 Case Study: Xen, a VMM Based on Paravirtualization
	5.9 Optimization of Network Virtualization in Xen 2.0
	5.10 vBlades: Paravirtualization Targeting an x86-64 Itanium Processor
	5.11 A Performance Comparison of Virtual Machines
	5.12 The Darker Side of Virtualization
	5.13 Software Fault Isolation
	5.14 Further Reading
	5.15 History Notes
	5.16 Exercises and Problems

	6 Cloud Resource Management and Scheduling
	6.1 Policies and Mechanisms for Resource Management
	6.2 Applications of Control Theory to Task Scheduling on a Cloud
	6.3 Stability of a Two-Level Resource Allocation Architecture
	6.4 Feedback Control Based on Dynamic Thresholds
	6.5 Coordination of Specialized Autonomic Performance Managers
	6.6 A Utility-Based Model for Cloud-Based Web Services
	6.7 Resource Bundling: Combinatorial Auctions for Cloud Resources
	6.8 Scheduling Algorithms for Computing Clouds
	6.9 Fair Queuing
	6.10 Start-Time Fair Queuing
	6.11 Borrowed Virtual Time
	6.12 Cloud Scheduling Subject to Deadlines
	6.13 Scheduling MapReduce Applications Subject to Deadlines
	6.14 Resource Management and Dynamic Application Scaling
	6.15 Further Reading
	6.16 Exercises and Problems

	7 Networking Support
	7.1 Packet-Switched Networks
	7.2 The Internet
	7.3 Internet Migration to IPv6
	7.4 The Transformation of the Internet
	7.5 Web Access and the TCP Congestion Control Window
	7.6 Network Resource Management
	7.7 Interconnection Networks for Computer Clouds
	7.8 Storage Area Networks
	7.9 Content-Delivery Networks
	7.10 Overlay Networks and Small-World Networks
	7.11 Scale-Free Networks
	7.12 Epidemic Algorithms
	7.12.1 Susceptible-Infective (SI)
	7.12.2 Susceptible-Infectious-Recover (SIR)
	7.12.3 Susceptible-Infective-Susceptible (SIS)

	7.13 Further Reading
	7.14 History Notes
	7.15 Exercises and Problems

	8 Storage Systems
	8.1 The Evolution of Storage Technology
	8.2 Storage Models, File Systems, and Databases
	8.3 Distributed File Systems: The Precursors
	8.4 General Parallel File System
	8.5 Google File System
	8.6 Apache Hadoop
	8.7 Locks and Chubby: A Locking Service
	8.8 Transaction Processing and NoSQL Databases
	8.9 BigTable
	8.10 Megastore
	8.11 History Notes
	8.12 Further Reading
	8.13 Exercises and Problems

	9 Cloud Security
	9.1 Cloud Security Risks
	9.2 Security: The Top Concern for Cloud Users
	9.3 Privacy and Privacy Impact Assessment
	9.4 Trust
	9.5 Operating System Security
	9.6 Virtual Machine Security
	9.7 Security of Virtualization
	9.8 Security Risks Posed by Shared Images
	9.9 Security Risks Posed by a Management OS
	9.10 Xoar: Breaking the Monolithic Design of the TCB
	9.11 A Trusted Virtual Machine Monitor
	9.12 Further Reading
	9.13 Exercises and Problems

	10 Complex Systems and Self-Organization
	10.1 Complex Systems
	10.2 Abstraction and Physical Reality
	10.3 Quantifying Complexity
	10.4 Emergence and Self-Organization
	10.5 Composability Bounds and Scalability
	10.6 Modularity, Layering, and Hierarchy
	10.7 More on the Complexity of Computing and Communication Systems
	10.8 Systems of Systems: Challenges and Solutions
	10.9 Further Reading
	10.10 Exercises and Problems

	11 Cloud Application Development
	11.1 Amazon Web Services: EC2 Instances
	11.2 Connecting Clients to Cloud Instances Through Firewalls
	11.3 Security Rules for Application and Transport Layer Protocols in EC2
	11.4 How to Launch an EC2 Linux Instance and Connect to It
	11.5 How to Use S3 in Java
	11.6 How to Manage SQS Services in C#
	11.7 How to Install the Simple Notification Service on Ubuntu 10.04
	11.8 How to Create an EC2 Placement Group and Use MPI
	11.9 How to Install Hadoop on Eclipse on a Windows System
	11.10 Cloud-Based Simulation of a Distributed Trust Algorithm
	11.11 A Trust Management Service
	11.12 A Cloud Service for Adaptive Data Streaming
	11.13 Cloud-Based Optimal FPGA Synthesis
	11.14 Exercises and Problems

	Literature
	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

